已知函數(shù)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x-3.
(1)求f(x)在R上的解析式;
(2)畫(huà)出函數(shù)y=f(x)圖象的示意圖;
(3)根據(jù)圖象寫(xiě)出函數(shù)y=f(x)的單調(diào)遞增(減)區(qū)間(不需要證明).

解:(1)當(dāng)x<0時(shí),-x>0,∴f(-x)=x2+2x-3,
又∵f(x)是奇函數(shù)∴f(x)=-f(-x)=-x2-2x+3,
∴f(x)=-x2-2x+3,
當(dāng)x=0時(shí),f(-0)=-f(0),即f(0)=0.
所以f(x)=
(2)函數(shù)y=f(x)的示意圖如下:

(3)單調(diào)遞增區(qū)間為:(-∞,-1),(1,+∞);單調(diào)遞減區(qū)間為:(-1,0),(0,1).
分析:(1)只需求出x≤0時(shí)的表達(dá)式即可,設(shè)x<0,則-x>0,由x>0時(shí),f(x)=x2-2x-3,可求f(-x),再根據(jù)奇函數(shù)性質(zhì)可求出f(x),及f(0).
(2)根據(jù)各段函數(shù)特征依次畫(huà)出即可.
(3)觀察圖象,從左向右呈上升趨勢(shì)為增函數(shù),呈下降趨勢(shì)則為減函數(shù),依此可寫(xiě)出單調(diào)區(qū)間.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性及其應(yīng)用、單調(diào)性與圖象作法,屬基礎(chǔ)知識(shí),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+ln
x
2-x
(0<x<2).
(1)試問(wèn)f(x)+f(2-x)的值是否為定值?若是,求出該定值;若不是請(qǐng),說(shuō)明理由;
(2)定義Sn=
2n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+
f(
2n-1
n
)
,其中n∈N*,求S2013;
(3)在(2)的條件下,令Sn+1=2an,若不等式2an(an)m>1對(duì)?n∈N*且n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-|2x-a|,a∈R.
(I)當(dāng)a=5時(shí),求不等式f(x)≥3x-2的解集.
(II)求證:函數(shù)f(x)=1-|2x-a|的最大值恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問(wèn):PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案