已知定義在[1,8]上的函數(shù)f(x)=
4-8|x-
3
2
|    1≤x≤2
1
2
f(
x
2
)       2<x≤8
.則下列結(jié)論中,錯誤的是( 。
A、f(3)=2
B、函數(shù)f(x)的值域為[0,4]
C、對任意的x∈[1,8],不等式xf(x)≤6恒成立
D、將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列
分析:先求出函數(shù)的解析式f(x)=
4-8|x-
3
2
|   1≤x≤2
2-4
x
2
-
3
2
    2<x≤4
1-2
x
4
-
3
2
       4<x≤8
,利用函數(shù)的特點畫出對應(yīng)圖象,結(jié)合圖形對四個選項一一分析即可求出結(jié)論.
解答:解:因為f(x)=
4-8|x-
3
2
|  ,1≤x≤2
1
2
f(
x
2
)        x>2

所以f(x)=
4-8|x-
3
2
|   1≤x≤2
2-4
x
2
-
3
2
    2<x≤4
1-2
x
4
-
3
2
       4<x≤8
,
其圖象特征為:在每一段圖象的縱坐標縮短到原來的一半,而橫坐標伸長到原來的2倍,并且圖象右移
2n-1
2
個單位,從而
圖象為:精英家教網(wǎng)
A對:顯然f(3)=2-4|
3
2
-
3
2
|=2;
B:結(jié)合圖象知對;
C:xf(x)>6?f(x)>
6
x
,結(jié)合圖象可知對;
因為函數(shù)的極小值為0,不能做等比數(shù)列中的項,D從而錯.
故選D.
點評:本題的選項四涉及到等比數(shù)列.在等比數(shù)列中,要求各項均不為0,這一點在解題時要注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,8]上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),2<x≤8
,該函數(shù)的值域是
[0,4]
[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,8]上的函數(shù) f(x)=
4-8|x-
3
2
|,  1≤x≤2
1
2
f(
x
2
),  2<x≤8
則下列結(jié)論中,錯誤的是(  )
A、f(6)=1
B、函數(shù)f(x)的值域為[0,4]
C、將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列
D、對任意的x∈[1,8],不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省武漢市華師一附中高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義在[1,8]上的函數(shù) 則下列結(jié)論中,錯誤的是( )
A.f(6)=1
B.函數(shù)f(x)的值域為[0,4]
C.將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列
D.對任意的x∈[1,8],不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省成都市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知定義在[1,8]上的函數(shù).則下列結(jié)論中,錯誤的是( )
A.f(3)=2
B.函數(shù)f(x)的值域為[0,4]
C.對任意的x∈[1,8],不等式xf(x)≤6恒成立
D.將函數(shù)f(x)的極值由大到小排列得到數(shù)列{an},n∈N*,則{an}為等比數(shù)列

查看答案和解析>>

同步練習(xí)冊答案