3.求下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-$\root{3}{{x}^{2}}$;
(2)y=$\frac{tanx}{{e}^{x}}$;
(3)y=sinlnx;
(4)y=e${\;}^{\frac{1}{x}}$.

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法計(jì)算即可.

解答 解:(1)y=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-$\root{3}{{x}^{2}}$,
∴y′=-$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$-$\frac{2\root{3}{{x}^{2}}}{3x}$;
(2)y=$\frac{tanx}{{e}^{x}}$;
∴y′=$\frac{(tanx)′-tanx}{{e}^{x}}$=$\frac{\frac{1}{co{s}^{2}x}-tanx}{{e}^{x}}$=$\frac{1-\frac{1}{2}sin2x}{{e}^{x}co{s}^{2}x}$=$\frac{2-sin2x}{2{e}^{x}co{s}^{2}x}$;
(3)y=sin(lnx);
∴y′=cos(lnx)•(lnx)′=$\frac{cos(lnx)}{x}$;
(4)y=e${\;}^{\frac{1}{x}}$,
∴y′=e${\;}^{\frac{1}{x}}$•($\frac{1}{x}$)′=-$\frac{{e}^{\frac{1}{x}}}{{x}^{2}}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)全集U={x∈N|x≥2},集合A={x|x2-5x≥0},B={x|x≥3},則(∁UA)∩B=( 。
A.{3}B.{3.4}C.{3.4,5}D.{3.4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.{an}的相鄰兩項(xiàng)an,an+1是方程x2-cnx+($\frac{1}{3}$)n=0的兩根,且a1=2,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時(shí),$f(x)=\left\{\begin{array}{l}{2^{|x-1|}}-1,0<x≤2\\ \frac{1}{2}f(x-2),x>2\end{array}\right.$,則函數(shù)g(x)=2f(x)-1的零點(diǎn)個(gè)數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在等差數(shù)列{an}中,已知a4=2,a8=14,則a15等于( 。
A.32B.-32C.35D.-35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若y=1-sin2x-mcosx的最小值為-4,則m的值為±5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.角α的終邊落在區(qū)間(-3π,-$\frac{5}{2}$π)內(nèi),則角α所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.化簡(jiǎn):cos(2x+y)+2sin(x+y)sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在三角形ABC中,點(diǎn)D是AB的中點(diǎn),且滿足|$\overrightarrow{CD}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$$•\overrightarrow{CB}$=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案