8.已知數(shù)列{an}滿足:an=$\frac{1}{n(n+1)}$,且Sn=$\frac{10}{11}$,則n的值為( 。
A.9B.10C.11D.12

分析 由an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,且Sn=$\frac{10}{11}$,利用裂項(xiàng)求和法能求出n的值.

解答 解:∵數(shù)列{an}滿足:an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,且Sn=$\frac{10}{11}$,
∴${S}_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{10}{11}$,
解得n=10.
故選:B.

點(diǎn)評(píng) 本題考查數(shù)列的項(xiàng)數(shù)的求法,考查裂項(xiàng)求和法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:?x∈R,使得x2+2ax+2-a=0;命題q:不等式ax2-$\sqrt{2}$ax+1>0對(duì)任意x∈R成立,若p假q真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一條漸近線與圓x2+(y-2)2=1至多有一個(gè)交點(diǎn),則雙曲線的離心率為( 。
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$a∈(0,\frac{π}{2})$,tan α=2,則cosα=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式0<x2-x-2≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果角θ的終邊經(jīng)過點(diǎn)($\frac{\sqrt{5}}{5}$,$\frac{-2\sqrt{5}}{5}$),則cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z滿足方程z=(z-2)i,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再把所得的圖象向右平移φ個(gè)單位長(zhǎng)度,得到偶函數(shù)y=g(x)的圖象,則φ的值可能是( 。
A.$\frac{π}{8}$B.$\frac{5π}{24}$C.$\frac{3π}{4}$D.$\frac{15π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.甲口袋內(nèi)裝有大小相等的8個(gè)紅球和4個(gè)白球,乙口袋內(nèi)裝有大小相等的9個(gè)紅球和3個(gè)白球,從兩個(gè)口袋內(nèi)各摸出1個(gè)球,那么$\frac{5}{12}$等于( 。
A.2個(gè)球都是白球的概率B.2個(gè)球中恰好有1個(gè)是白球的概率
C.2個(gè)球都不是白球的概率D.2個(gè)球不都是紅球的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案