【題目】在平面直角坐標(biāo)系中,已知橢圓的右焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸,軸分別交于兩點(diǎn).
(。┰O(shè)直線斜率分別為,求的值;
(2)求面積的最大值.
【答案】(1) (2) (。 (ⅱ)
【解析】
(1)由題意和橢圓的幾何性質(zhì),列出方程組,求得的值,即可得到橢圓的方程;
(2)(ⅰ)設(shè),,則,利用斜率公式,即可求解.
(ⅱ)直線的斜率,進(jìn)而得到直線的斜率,得出直線的方程為,進(jìn)而得出的坐標(biāo),求得的面積,再利用基本不等式,即可求解面積的最值.
(1),且過(guò),,
解得,,
∴橢圓方程為
(2)(。┰O(shè),,則,
則
(ⅱ)直線的斜率,又,故直線的斜率,
由題意知,,所以,
所以直線的方程為
令,得,即,令,得,即,
可得的面積
因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
此時(shí)取得最大值,所以的面積為最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明直線過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠對(duì)這些產(chǎn)品進(jìn)行了安全和環(huán)保這兩個(gè)性能的質(zhì)量檢測(cè)。工廠決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),現(xiàn)將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào);
(1)如果從第8行第4列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的3件產(chǎn)品的編號(hào);
(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件產(chǎn)品的安全性能和環(huán)保性能的質(zhì)量檢測(cè)結(jié)果如下表:
檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為,求,的值。
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | 4 |
(3)已知,,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,底面.
(1)求證:平面;
(2)若,直線與平面所成的角為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一矩形濱河公園,其中長(zhǎng)為百米,長(zhǎng)為百米,的中點(diǎn)為便民服務(wù)中心.根據(jù)居民實(shí)際需求,現(xiàn)規(guī)劃建造三條步行通道、及,要求點(diǎn)、分別在公園邊界、上,且.
(1)設(shè).①求步道總長(zhǎng)度關(guān)于的函數(shù)解析式;②求函數(shù)的定義域.
(2)為使建造成本最低,需步行通道總長(zhǎng)最短,試求步行通道總長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知當(dāng)(其中是自然對(duì)數(shù))時(shí),在上至少存在一點(diǎn),使成立,求的取值范圍;
(3)求證:當(dāng)時(shí),對(duì)任意, ,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“雙節(jié)”期間,高速公路車(chē)輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車(chē)中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢(xún)問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速分成六段: , , , , , 后得到如圖的頻率分布直方圖.
(1)調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車(chē)輛車(chē)速的眾數(shù)、中位數(shù)及平均數(shù)的估計(jì)值;
(3)若從車(chē)速在的車(chē)輛中任抽取2輛,求車(chē)速在的車(chē)輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;
(Ⅱ)當(dāng)的圖像經(jīng)過(guò)點(diǎn)時(shí),求的值及函數(shù)的最小正周期.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com