12.{an}是等差數(shù)列,{bn}是等比數(shù)列,Tn是{bn}的前n項和,a1=b1=1,且滿足$\sqrt{{a_2}+2}+\sqrt{{b_2}-2}=2\sqrt{2}$,當a2+b2取最小值時,
(1)求Tn;
(2)Sn是{|an|}的前n項和,求Sn

分析 利用柯西不等式(a2+2+b2-2)(1+1)≥($\sqrt{{a}_{2}+2}+\sqrt{_{2}-2}$)2=8,可得(a2+b2min=4,此時a2+2=b2-2,可得a2,b2,及等比數(shù)列{bn}的公比,等差數(shù)列{an}的公差
(1)直接用公式求Tn
(2)|a1|=1,n≥2時,|an|=n-2,再求Sn

解答 解:利用柯西不等式(a2+2+b2-2)(1+1)≥($\sqrt{{a}_{2}+2}+\sqrt{_{2}-2}$)2=8,
∴(a2+b2min=4,此時a2+2=b2-2,a2=0,b2=4,
∴等比數(shù)列{bn}的公比為4,等差數(shù)列{an}的公差為-1
(1)Tn=$\frac{1×(1-{4}^{n})}{1-4}=\frac{1}{3}({4}^{n}-1)$
(2)|a1|=1,n≥2時,|an|=n-2,{|an|}的前n項和Sn
Sn=$\left\{\begin{array}{l}{1\\;\\;(n=1)}\\{1+\frac{(n-1)(0+n-2)}{2}=\frac{{n}^{2}-3n+4}{2}\\;(n≥2)}\end{array}\right.$

點評 .本題考查了等差、等比數(shù)列的通項及性質(zhì),求和公式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.在平面直角坐標系中,點P為橢圓$\frac{{x}^{2}}{3}$+y2=1上的一個動點,則點P到直線x-y+6=0的最大距離為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.A城市的出租車計價方式為:若行程不超過3千米,則按“起步價”10元計價;若行程超過3千米,則之后2千米以內(nèi)的行程按“里程價”計價,單價為1.5元/千米;若行程超過5千米,則之后的行程按“返程價”計價,單價為2.5元/千米.設(shè)某人的出行行程為x千米,現(xiàn)有兩種乘車方案:①乘坐一輛出租車;②每5千米換乘一輛出租車.
(Ⅰ)分別寫出兩種乘車方案計價的函數(shù)關(guān)系式;
(Ⅱ)對不同的出行行程,①②兩種方案中哪種方案的價格較低?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知x>-1,則$x+\frac{4}{x+1}$的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.-1,a1,a2,-4成等差數(shù)列,-1,b,-4成等比數(shù)列,則$\frac{{{a_2}+{a_1}}}$=$±\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在△ABC中,點O是BC的中點,過點O的直線分別交直線AB、AC于不同的兩點M、N,若$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}({mn>0})$,則m+n的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.定義在(0,+∞)上的函數(shù)f(x)滿足:(1)當$x∈[{\frac{1}{2},1})$時,f(x)=$\frac{1}{2}-|{2x-\frac{3}{2}}$|;(2)f(2x)=2f(x),則關(guān)于x的函數(shù)F(x)=f(x)-a的零點從小到大依次為x1,x2,…,xn…x2n,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n-1+x2n=3×(2n-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}中,a1=2,an=2an-1-1,則通項an=2n-1+1.

查看答案和解析>>

同步練習冊答案