已知f(x)=
x2+2x-3
x-1
(x>1)
ax+1(x≤1)
在點x=1處連續(xù),則a的值是( 。
A、2B、3C、-2D、-4
分析:若函數(shù)f(x)=
x2+2x-3
x-1
(x>1)
ax+1(x≤1)
在點x=1處連續(xù),則當(dāng)x=1時,按照兩個函數(shù)解析式,求出的函數(shù)值應(yīng)該相等,化簡x>1時的函數(shù)解析式,將x=1代入,構(gòu)造關(guān)于a的方程,求出a值,即可得到答案.
解答:解:∵
x2+2x-3
x-1
=x+3
又∵f(x)=
x2+2x-3
x-1
(x>1)
ax+1(x≤1)
在點x=1處連續(xù),
∴當(dāng)x=1時,
∴3+1=a+1
∴a=3
故選B
點評:本題考查的知識點是函數(shù)的連續(xù)性,其中正確理解函數(shù)連續(xù)性的實質(zhì),是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)當(dāng)a=
1
2
時,解不等式f(x)≤0;
(Ⅱ)若a>0,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,則f{f[f(-2)]}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2,x>0
f(x+1),x≤0
則f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當(dāng)x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實數(shù)x<0及t>0,恒有g(shù)(x)+tf(t)>0,求正實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是
m
1
4
m
1
4

查看答案和解析>>

同步練習(xí)冊答案