【題目】設函數(shù), 的圖象在點處的切線與直線平行.

(1)求的值;

(2)若函數(shù)),且在區(qū)間上是單調函數(shù),求實數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1) 根據(jù)切線的斜率,求出b的值即可;

(2)求出的導數(shù), 上為單調遞減函數(shù),等價于上恒成立,即上恒成立,構造求最值即可.

試題解析:(1)由題意知,曲線在點處的切線斜率為3,所以,,所以. (2)1,所以,若上為單調遞減函數(shù),則上恒成立, ,所以. ,,,得 ,得,上是減函數(shù),在上是增函數(shù),, 無最大值,上不恒成立不可能是單調減函數(shù). 若上為單調遞增函數(shù),則上恒成立,,所以,由前面推理知, 的最小值為, ∴,故的取值范圍是.

點晴:本題主要考查用導數(shù)研究函數(shù)的單調性,不等式恒成立問題. 上為單調遞減函數(shù),等價于上恒成立,通過變量分離可轉化為上恒成立,先構造即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (k>0).
(1)若f(x)>m的解集為{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=an3n(x∈R).求數(shù)列{bn}前n項和的公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設cn= ,數(shù)列{cn}的前n項和為Tn
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過的動圓恒與軸相切,設切點為是該圓的直徑.

(Ⅰ)求點軌跡的方程;

(Ⅱ)當不在y軸上時,設直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=cos2x的圖象(
A.向右平移
B.向右平移
C.向左平移
D.向左平移

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0, ]上的最大值為6,求常數(shù)m的值及此函數(shù)當x∈R時的最小值,并求相應的x的取值集合.

查看答案和解析>>

同步練習冊答案