已知函數(shù) (x∈R,且x≠2).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù)與函數(shù)在x∈[0,1]上有相同的值域,求a的值.
(1)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(2).
解析試題分析:解題思路(1)分離參數(shù)轉(zhuǎn)化從基本不等式求最值;(2)由(1)得出的值域,再利用一元二次函數(shù)的單調(diào)性求值.規(guī)律總結(jié):涉及分式求最值,往往利用分離參數(shù)法,出現(xiàn)定值,以便運(yùn)用基本不等式求解;求一元二次函數(shù)的值域要注意運(yùn)用數(shù)形結(jié)合思想.
試題解析:(1),
令,由于在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,∴容易求得的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為.
(2)∵在上單調(diào)遞減,∴其值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/f/kvsmc.png" style="vertical-align:middle;" />,
即時,.
∵為最大值,∴最小值只能為,
若,則;若,則;
綜上得.
考點(diǎn):1.分離常數(shù)法;2.一元二次函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)+的圖象通過原點(diǎn),對稱軸為,.是的導(dǎo)函數(shù),且 .
(1)求的表達(dá)式(含有字母);
(2)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)條件下,若,,是否存在自然數(shù),使得當(dāng)時恒成立?若存在,求出最小的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/1/th7k94.png" style="vertical-align:middle;" />.
(1)若,求實(shí)數(shù)的取值范圍;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作容器的底面的一邊比另一邊長0.5m,那么高為多少時容器的容積最大?并求出它的最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實(shí)踐證明, 聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說話,聲音能量為時,聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時,聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),且有.
(1)求證:,且;
(2)求證:函數(shù)在區(qū)間內(nèi)有兩個不同的零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com