已知,是方程的兩根,求點的軌跡方程.
由韋達(dá)定理知
②得,即

,
的軌跡方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-x2上的點到直線4x+3y-8=0距離的最小值是(  )
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,過其左焦點且斜率為的直線與橢圓及其準(zhǔn)線的交點從左到右的順序為(如圖),設(shè)
(1)求的解析式;
(2)求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線交雙曲線及其漸近線于,,,四點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過圓外一點,作圓的割線,求割線被圓截得的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩形中,,,中心在第一象限內(nèi),且與軸的距離為一個單位,動點沿矩形一邊運動,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果雙曲線的兩個焦點分別為,一條漸近線方程為,則該雙曲線的方程為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
過拋物線的對稱軸上一點的直線與拋物線相交于M、N兩點,自M、N向直線作垂線,垂足分別為、。           
(Ⅰ)當(dāng)時,求證:;
(Ⅱ)記、 、的面積分別為、,是否存在,使得對任意的,都有成立。若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果直線與雙曲線兩支各有一個交點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案