設(shè)函數(shù)為實(shí)常數(shù))在區(qū)間上的最小值為-4,那么a的值為   
【答案】分析:利用求導(dǎo)法則,求出函數(shù)f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)值為0,求出x的值,再由區(qū)間的兩端點(diǎn)0和,表示出函數(shù)的最小值,根據(jù)函數(shù)的最小值為-4,即可得到a的值.
解答:解:求導(dǎo)得:f′(x)=-4sinxcosx+2cos2x
=-2sin2x+2cos2x
=4sin(-2x),
令f′(x)=0,得到x=,
∵f(0)=2+a,f()=a,f()=3+a,
∴函數(shù)的最小值為a,又函數(shù)區(qū)間上的最小值為-4,
則a=-4.
故答案為:-4
點(diǎn)評(píng):此題考查了利用導(dǎo)數(shù)研究閉區(qū)間上函數(shù)的最值,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,要求學(xué)生熟練掌握求導(dǎo)法則,以及三角函數(shù)的恒等變換公式,綜合運(yùn)用所學(xué)知識(shí)來解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)設(shè)函數(shù)f(x)=2cos2x+
3
sin2x+a(a
為實(shí)常數(shù))在區(qū)間[0,
π
2
]
上的最小值為-4,那么a的值為
-4
-4

查看答案和解析>>

同步練習(xí)冊(cè)答案