5.已知隨機變量ξ~B(5,$\frac{1}{3}$),則P(ξ=3)=(  )
A.$\frac{5}{27}$B.$\frac{7}{81}$C.$\frac{40}{243}$D.$\frac{19}{144}$

分析 隨機變量ξ~B(5,$\frac{1}{3}$),可得P(ξ=3)=${C}_{5}^{3}•(\frac{1}{3})^{3}(\frac{2}{3})^{2}$,即可得出結(jié)論.

解答 解:∵隨機變量ξ~B(5,$\frac{1}{3}$),
∴P(ξ=3)=${C}_{5}^{3}•(\frac{1}{3})^{3}(\frac{2}{3})^{2}$=$\frac{40}{243}$,
故選C.

點評 本題考查了二項分布與n次獨立重復(fù)試驗的模型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=Asin(ωx+ϕ)$(ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)表達式為(  )
A.$y=-4sin(\frac{π}{8}x-\frac{π}{4})$B.$y=4sin(\frac{π}{8}x-\frac{π}{4})$C.$y=-4sin(\frac{π}{8}x+\frac{π}{4})$D.$y=4sin(\frac{π}{8}x+\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若S△ABC=3S${\;}_{△BC{F}_{2}}$,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足an+2=an+1-an,且a1=2,a2=3,則a2017的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x+alnx(a∈R).
(Ⅰ)當a=2時,求函數(shù)f(x)在(1,f(1))處的切線方程;
(Ⅱ)當a>0時,若函數(shù)f(x)有兩個極值點x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線C:y2=2px(p>0)的焦點為F,P為C上異于原點的任意一點,過點P的直線l交C于另一點Q,交x軸的正半軸于點S,且有|FP|=|FS|.當點P的橫坐標為3時,|PF|=|PS|.
(Ⅰ)求C的方程;
(Ⅱ)若直線l1∥l,且l1和C有且只有一個公共點E.
(。┳C明直線PE過定點,并求出定點坐標;
(ⅱ)△PQE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖在空間四邊形OABC中,點M在OA上,且OM=2MA,N為BC中點,則$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$B.$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$C.$\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$D.$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)命題p:“對任意的x∈R,x2-2x>a”,命題q:“函數(shù)f(x)=x2+2ax+2-a在R上有零點”.如果命題p∨q為真,命題p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.中心在坐標原點,離心率為 $\frac{5}{3}$且實軸長為6的雙曲線的焦點在 x 軸上,則它的漸近線方程是( 。
A.y=±$\frac{5}{4}$xB.y=±$\frac{4}{5}$xC.y=±$\frac{4}{3}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

同步練習(xí)冊答案