[2012·江蘇高考]已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實(shí)數(shù)c的值為_(kāi)_______.
9
通過(guò)值域求a,b的關(guān)系是關(guān)鍵.
由題意知f(x)=x2+ax+b=(x+)2+b-.
∵f(x)的值域?yàn)閇0,+∞),∴b-=0,即b=.
∴f(x)=(x+)2.
又∵f(x)<c,∴(x+)2<c,
即-<x<-.

②-①,得2=6,∴c=9.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)(2011•福建)設(shè)函數(shù)f(θ)=,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(Ⅰ)若點(diǎn)P的坐標(biāo)為,求f(θ)的值;
(Ⅱ)若點(diǎn)P(x,y)為平面區(qū)域Ω:上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•湖北)(1)已知函數(shù)f(x)=lnx﹣x+1,x∈(0,+∞),求函數(shù)f(x)的最大值;
(2)設(shè)a1,b1(k=1,2…,n)均為正數(shù),證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則≤1;
②若b1+b2+…bn=1,則≤b12+b22+…+bn2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053031732303.png" style="vertical-align:middle;" />,若存在常數(shù),對(duì)任意,有,則稱函數(shù).給出下列函數(shù):
;     ②;  ③;   ④;
是定義在R上的奇函數(shù),且滿足對(duì)一切實(shí)數(shù)均有.其中是函數(shù)的序號(hào)是(   )
A.①②④B.①②⑤C.①③④D.①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)集合A=[0,),B=[,1],函數(shù)f(x)=,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(  )
A.(0,]B.(,)
C.(,]D.[0,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

具有性質(zhì):=-f(x)的函數(shù),我們稱為滿足“倒負(fù)”變換的函數(shù),下列函數(shù):
①y=x-;②y=x+;③y=,其中滿足“倒負(fù)”變換的函數(shù)是________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=,則使f[f(x)]=2成立的實(shí)數(shù)x的集合為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知集合M={},若對(duì)于任意,存在,使得成立,則稱集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={};
②M={};
③M={};
④M={}. 
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是                   ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線與函數(shù)的圖像分別交于點(diǎn),則當(dāng)達(dá)到最小時(shí)的值為(   )
A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案