【題目】如圖,在邊長(zhǎng)為4正方體中,的中點(diǎn),,點(diǎn)在正方體表面上移動(dòng),且滿足,則點(diǎn)和滿足條件的所有點(diǎn)構(gòu)成的圖形的面積是______.

【答案】18

【解析】

過(guò)點(diǎn)與直線垂直的所有直線在過(guò)點(diǎn)垂直的平面上,所以點(diǎn)的軌跡就是過(guò)點(diǎn)與直線垂直的平面與正方體表面的交線.由正方體的垂直關(guān)系,可得平面,可得,再確定一條與相交且與垂直的直線,取中點(diǎn),連,可證,則有平面,只需確定出平面與正方體表面的交線,取中點(diǎn),連,可證共面,且為等腰梯形,即為所求的軌跡圖形,求其面積,即可求解.

的中點(diǎn)分別為,

連結(jié),,

由于,所以四點(diǎn)共面,

且四邊形為梯形,

,,,

,∵點(diǎn)在正方體表面上移動(dòng),

∴點(diǎn)的運(yùn)動(dòng)軌跡為梯形.

∵正方體的邊長(zhǎng)為4,

,,,

∴梯形為等腰梯形,∴其高為.

面積為.

故答案為:18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

1)當(dāng)時(shí),求方程的根的個(gè)數(shù);

2)若恒成立,求的取值范圍.

注: 為自然對(duì)數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形.

若在圖④中隨機(jī)選取-點(diǎn),則此點(diǎn)取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成一個(gè)面積為2的等腰直角三角形,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)設(shè)點(diǎn)在橢圓上,點(diǎn)在直線上,且,求證:為定值;

(3)設(shè)點(diǎn)在橢圓上運(yùn)動(dòng),,且點(diǎn)到直線的距離為常數(shù),求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的長(zhǎng)軸長(zhǎng)與焦距比為21,左焦點(diǎn)F(﹣20),一定點(diǎn)為P(﹣80).

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過(guò)P的直線與橢圓交于P1、P2兩點(diǎn),設(shè)直線P1F、P2F的斜率分別為k1k2,求證:k1+k2=0

3)求△P1P2F面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)甲乙兩地相距100海里,船從甲地勻速駛到乙地,已知某船的最大船速是36海里/時(shí):當(dāng)船速不大于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速成正比;當(dāng)船速不小于每小時(shí)30海里/時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比;當(dāng)船速為30海里/時(shí),它每小時(shí)使用的燃料費(fèi)用為300元;其余費(fèi)用(不論船速為多少)都是每小時(shí)480元;

1)試把每小時(shí)使用的燃料費(fèi)用P(元)表示成船速v(海里/時(shí))的函數(shù);

2)試把船從甲地行駛到乙地所需要的總費(fèi)用Y表示成船速v的函數(shù);

3)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需要的總費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)規(guī)劃將果樹(shù)種在正方形的場(chǎng)地內(nèi).為了保護(hù)果樹(shù)不被風(fēng)吹,決定在果樹(shù)的周圍種松樹(shù). 在下圖里,你可以看到規(guī)劃種植果樹(shù)的列數(shù)(n),果樹(shù)數(shù)量及松樹(shù)數(shù)量的規(guī)律:

1)按此規(guī)律,n = 5時(shí)果樹(shù)數(shù)量及松樹(shù)數(shù)量分別為多少;并寫(xiě)出果樹(shù)數(shù)量,及松樹(shù)數(shù)量關(guān)于n的表達(dá)式

2)定義: 增加的速度;現(xiàn)農(nóng)場(chǎng)想擴(kuò)大種植面積,問(wèn):哪種樹(shù)增加的速度會(huì)更快?并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于數(shù)列,如果存在常數(shù),使對(duì)任意正整數(shù),總有成立,那么我們稱數(shù)列﹣擺動(dòng)數(shù)列

1)設(shè),,,判斷數(shù)列、是否為﹣擺動(dòng)數(shù)列,并說(shuō)明理由;

2)已知﹣擺動(dòng)數(shù)列滿足:,.求常數(shù)的值;

3)設(shè),,且數(shù)列的前項(xiàng)和為.求證:數(shù)列﹣擺動(dòng)數(shù)列,并求出常數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“二萬(wàn)五千里長(zhǎng)征”是1934年10月到1936年10月中國(guó)工農(nóng)紅軍進(jìn)行的一次戰(zhàn)略轉(zhuǎn)移,是人類歷史上的偉大奇跡,向世界展示了中國(guó)工農(nóng)紅軍的堅(jiān)強(qiáng)意志,在期間發(fā)生了許多可歌可泣的英雄故事.在中國(guó)共產(chǎn)黨建黨周年之際,某中學(xué)組織了“長(zhǎng)征英雄事跡我來(lái)講”活動(dòng),已知該中學(xué)共有高中生名,用分層抽樣的方法從該校高中學(xué)生中抽取一個(gè)容量為的樣本參加活動(dòng),其中高三年級(jí)抽了人,高二年級(jí)抽了人,則該校高一年級(jí)學(xué)生人數(shù)為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案