(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點(diǎn)。
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當(dāng)點(diǎn)E在何位置時,BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大。
(Ⅰ);(Ⅱ)不論點(diǎn)E在何位置,都有BD⊥AE;(Ⅲ)。
解析試題分析:(Ⅰ)解:由該四棱錐的三視圖可知,該四棱錐P-ABCD的底面是邊長為1的正方形,
側(cè)棱PC⊥底面ABCD,且PC="2."
∴----------------------------2分
(Ⅱ) 不論點(diǎn)E在PC上何位置,都有BD⊥AE---------------------------------------3分
證明如下:連結(jié)AC,∵ABCD是正方形
∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC-----------5分
又∵∴BD⊥平面PAC
∵不論點(diǎn)E在何位置,都有AE平面PAC
∴不論點(diǎn)E在何位置,都有BD⊥AE ----------------------------------------------7分
(Ⅲ) 解法一:在平面DAE內(nèi)過點(diǎn)D作DG⊥AE于G,連結(jié)BG
∵CD="CB,EC=EC," ∴≌
∴ED="EB," ∵AD=AB ∴△EDA≌△EBA
∴BG⊥EA ∴為二面角D-EA-B的平面角--------------------------10分
∵BC⊥DE, AD∥BC ∴AD⊥DE
在Rt△ADE中==BG
在△DGB中,由余弦定理得
∴=-----------------------12分
[解法二:以點(diǎn)C為坐標(biāo)原點(diǎn),CD所在的直線為x軸建立空間直角坐標(biāo)系如圖示:
則,從
設(shè)平面ADE和平面ABE的法向量分別為
由可得:,
同理得:。令,則,
∴------10分
設(shè)二面角D-AE-B的平面角為,則 ∴------12分
考點(diǎn):錐體的體積公式;線面垂直的判定定理;線面垂直的性質(zhì)定理;二面角。
點(diǎn)評:二面角的求法是立體幾何中的一個難點(diǎn)。我們解決此類問題常用的方法有兩種:①綜合法,綜合法的一般步驟是:一作二說三求。②向量法,運(yùn)用向量法求二面角應(yīng)注意的是計算。很多同學(xué)都會應(yīng)用向量法求二面角,但結(jié)果往往求不對,出現(xiàn)的問題就是計算錯誤。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
是雙曲線 上一點(diǎn),、分別是雙曲線的左、右頂點(diǎn),直線,的斜率之積為.
(1)求雙曲線的離心率;
(2)過雙曲線的右焦點(diǎn)且斜率為1的直線交雙曲線于,兩點(diǎn),為坐標(biāo)原點(diǎn),為雙曲線上一點(diǎn),滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在△中,,,點(diǎn)在上,交于,交于.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面.
(Ⅰ)求證:平面.
(Ⅱ)設(shè),當(dāng)為何值時,二面角的大小為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知兩個正方形ABCD 和DCEF不在同一平面內(nèi),且平面ABCD ⊥平面DCEF,M,N分別為AB,DF的中點(diǎn)。
(1)求直線MN與平面ABCD所成角的正弦值;
(2)求異面直線ME與BN所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,⊥平面,為的中點(diǎn),為 的中點(diǎn),底面是菱形,對角線,交于點(diǎn).
求證:(1)平面平面;
(2)平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點(diǎn).
(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大;
(3) 求二面角E-AC-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點(diǎn),問AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說明點(diǎn)N的位置;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分別為PC、PB的中點(diǎn).
(Ⅰ)求證:PB平面ADMN;
(Ⅱ)求四棱錐P-ADMN的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com