【題目】將函數(shù)y=sin2x的圖象向左平移個(gè)單位,向上平移1個(gè)單位,得到的函數(shù)解析式為( )
A.y=sin(2x+)+1
B.y=sin(2x﹣)+1
C.y=sin(2x+)+1
D.y=sin(2x﹣)+1
【答案】A
【解析】解:將函數(shù)y=sin2x的圖象向左平移個(gè)單位,可得y=sin2(x+)=sin(2x+)的圖象,
再向上平移1個(gè)單位,得到的函數(shù)解析式為 y=sin(2x+)+1,
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)可以得到問題的答案,需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(diǎn)(1,2)的圓的方程為( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且右準(zhǔn)線方程為x=5.
(1)求橢圓方程;
(2)過橢圓右焦點(diǎn)F作斜率為1的直線l與橢圓C交于A,B兩點(diǎn),P為橢圓上一動(dòng)點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“神州”號(hào)飛船返回艙順利到達(dá)地球后,為了及時(shí)將航天員救出,地面指揮中心在返回艙預(yù)計(jì)到達(dá)的區(qū)域安排了同一條直線上的三個(gè)救援中心(記為B,C,D).當(dāng)返回艙距地面1萬米的P點(diǎn)時(shí)(假定以后垂直下落,并在A點(diǎn)著陸),C救援中心測(cè)得飛船位于其南偏東60°方向,仰角為60°,B救援中心測(cè)得飛船位于其南偏西30°方向,仰角為30°.D救援中心測(cè)得著陸點(diǎn)A位于其正東方向.
(1)求B,C兩救援中心間的距離;
(2)D救援中心與著陸點(diǎn)A間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一房產(chǎn)商競(jìng)標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ= ,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請(qǐng)你通過計(jì)算,為房產(chǎn)商提供決策建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象向右平移個(gè)單位,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的解析式,并寫出它的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( )
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形PBCD中, ,A為PD的中點(diǎn),如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點(diǎn)E在SD上,且 ,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(﹣5,a)作圓x2+y2﹣2ax+2y﹣1=0的兩條切線,切點(diǎn)分別為M(x1 , y1),N(x2 , y2),且 + =0,則實(shí)數(shù)a的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com