已知橢圓C:=1(a>b>0)的離心率e=,一條準線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.
①當直線OG的傾斜角為60°時,求△GOH的面積;
②是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.
(1)(2)①S△GOH②x2+y2
(1)因為,,a2=b2+c2,
解得a=3,b=,所以橢圓方程為
(2)①由解得 得
所以O(shè)G=,OH=,所以S△GOH.
②假設(shè)存在滿足條件的定圓,設(shè)圓的半徑為R,則OG·OH=R·GH,
因為OG2+OH2=GH2,故
當OG與OH的斜率均存在時,不妨設(shè)直線OG方程為y=kx,
所以O(shè)G2,
同理可得OH2,(將OG2中的k換成-可得),R=,
當OG與OH的斜率有一個不存在時,可得,
故滿足條件的定圓方程為:x2+y2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線)與橢圓交于、兩點,線段 的垂直平分線交軸于點,當變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知,是橢圓上不同的三點,,,在第三象限,線段的中點在直線上.

(1)求橢圓的標準方程;
(2)求點C的坐標;
(3)設(shè)動點在橢圓上(異于點,,)且直線PB,PC分別交直線OA兩點,證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的方程;
(2)點在圓上,且在第一象限,過作圓的切線交橢圓于,兩點,問:△的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)A,B分別是直線yxy=-x上的動點,且|AB|=,設(shè)O為坐標原點,動點P滿足.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1l2,直線l1,l2與點P的軌跡的相交弦分別為CDEF,設(shè)CDEF的弦中點分別為M,N,求證:直線MN恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2014·武漢模擬)圓(x-a)2+y2=1與雙曲線x2-y2=1的漸近線相切,則a的值是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點,,直線上有兩個動點,始終使,三角形的外心軌跡為曲線為曲線在一象限內(nèi)的動點,設(shè),,,則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點,點P在橢圓C上,線段PF與圓(x-2+y2=相切于點Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是橢圓C1+y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形, 則C2的離心率是________.

查看答案和解析>>

同步練習冊答案