6.已知f(x)=sinx+2cosx,若函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,則cos(α+β)=-$\frac{3}{5}$.

分析 f(x)=sinx+2cosx=$\sqrt{5}$sin(x+φ),其中cosφ=$\frac{\sqrt{5}}{5}$,sinφ=$\frac{2\sqrt{5}}{5}$.由x∈(0,π),可得φ<x+φ<π+φ.由于函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,可得y=m與y=f(x)的圖象有兩個(gè)交點(diǎn),可得α與β關(guān)于直線x=$\frac{π}{2}$對(duì)稱,即可得出.

解答 解:f(x)=sinx+2cosx=$\sqrt{5}$$(\frac{1}{\sqrt{5}}sinx+\frac{2}{\sqrt{5}}cosx)$=$\sqrt{5}$sin(x+φ),其中cosφ=$\frac{\sqrt{5}}{5}$,sinφ=$\frac{2\sqrt{5}}{5}$.
∵x∈(0,π),∴φ<x+φ<π+φ.
∵函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,
∴y=m與y=f(x)的圖象有兩個(gè)交點(diǎn),
cos2φ=2cos2φ-1=$2×(\frac{\sqrt{5}}{5})^{2}$-1=-$\frac{3}{5}$
∴sinφ<m<$\sqrt{5}$.
且α與β關(guān)于直線x=$\frac{π}{2}$對(duì)稱,
∴α+β+2φ=π,
則cos(α+β)=-cos2φ=-$\frac{3}{5}$.
故答案為:-$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了和差公式、三角函數(shù)的圖象與性質(zhì)、函數(shù)的零點(diǎn)轉(zhuǎn)化為圖象的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.?dāng)?shù)列{an}中,an>0,a1=5,n≥2時(shí),an+an-1=$\frac{7}{{a}_{n}{-a}_{n-1}}+6$.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.函數(shù)f(x)=x2+ax+2b的一個(gè)零點(diǎn)在(0,1)內(nèi),另一個(gè)零點(diǎn)在(1,2)內(nèi).
(1)在平面直角坐標(biāo)系中,畫出點(diǎn)(a,b)構(gòu)成的平面區(qū)域;
(2)求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(θ)=$\frac{2co{s}^{3}θ-co{s}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-2}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,求f($\frac{π}{3}$)的值.(提示:立方差公式:a3-b3=(a-b)•(a2+ab+b2)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集∪={0,1,2},集合A={0,1},則CUA=( 。
A.{2}B.{0,1}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知△ABC的三個(gè)頂點(diǎn)為A(1,1),B(-1,-1),(2+$\sqrt{3}$,-2-$\sqrt{3}$),求三角形的三邊所在直線的斜率及傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在等差數(shù)列{an}中,a1,a2015為方程x2-10x+16=0的兩根,則a2+a1008+a2014=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)$\overrightarrow{a}$=($\sqrt{2}$,m)(m>0),$\overrightarrow$=(sinx,cosx)且函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最大值為2.
(1)求m與函數(shù)f(x)的最小正周期;
(2)△ABC中,f(A-$\frac{π}{4}$)+f(B-$\frac{π}{4}$)=12$\sqrt{2}$sinAsinB,角A、B、C所對(duì)的邊分別是a、b、c,且C=$\frac{π}{3}$,c=$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下列四個(gè)有關(guān)算法的說(shuō)法中,正確的是(2)(3)(4).( 要求只填寫序號(hào) )
(1)算法的各個(gè)步驟是可逆的;         (2)算法執(zhí)行后一定得到確定的結(jié)果;
(3)解決某類問(wèn)題的算法不是唯一的;    (4)算法一定在有限多步內(nèi)結(jié)束.

查看答案和解析>>

同步練習(xí)冊(cè)答案