19.定積分${∫}_{0}^{2}$(-3)dx等于(  )
A.-3B.3C.-6D.6

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可.

解答 解:定積分${∫}_{0}^{2}$(-3)dx=-3x|${\;}_{0}^{2}$=-6,
故選:C

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若α為第三象限角,則$\sqrt{1-sin{α}^{2}}$的結(jié)果為( 。
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線x-$\sqrt{3}$y+3=0的斜率是( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當(dāng)m=n=5時(shí),若$f(x)={a_5}{(1-x)^5}+{a_4}{(1-x)^4}+…+{a_1}(1-x)+{a_0}$,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知a=$\sqrt{2}$,c=2,A=30°,則C等于( 。
A.45°B.45°或135°C.30°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機(jī)變量ξ的分布列為p(ξ=k)=$\frac{k}{3a}$(k=1,2,3,4,5),則p(ξ≤2)等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{15}$D.$\frac{2}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知圓${x^2}+{y^2}+(4-2a)x-2\sqrt{3}ay+4{a^2}-4a-12=0$,定直線l經(jīng)過點(diǎn)A(1,0),若對(duì)任意的實(shí)數(shù)a,定直線l被圓C截得的弦長始終為定值d,求得此定值d等于( 。
A.$2\sqrt{7}$B.$\sqrt{31}$C.$\sqrt{34}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,程序據(jù)圖(算法流程圖)的輸出結(jié)果為( 。
A.$\frac{3}{4}$B.$\frac{1}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-2,3]上隨機(jī)取一個(gè)數(shù)x,則x∈[-1,1]的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案