已知函數(shù)數(shù)學(xué)公式(a≥0).
(I)當(dāng)a=1時(shí),求f(x)在點(diǎn)(3,f(3))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[0,2]上的最小值.

解:(I) 當(dāng)a=1時(shí),,∴,f(3)=0,
∴f(x)在點(diǎn)(3,f(3))處的切線的斜率f(3)=,切點(diǎn)(3,0),
因此其切線方程為,即3x-4y-9=0.
( II)x≠-1,,
①當(dāng)a=0時(shí),在(0,2]上導(dǎo)函數(shù),所以f(x)在[0,2]上遞增,可得f(x)的最小值為f(0)=0;
②當(dāng)0<a<2時(shí),導(dǎo)函數(shù)f'(x)的符號(hào)如下表所示
x[0,a)a(a,2]
f'(x)-0+
f(x)單調(diào)遞減極小值單調(diào)遞增
所以f(x)的最小值為
③當(dāng)a≥2時(shí),在[0,2)上導(dǎo)函數(shù)f'(x)<0,∴f(x)在[0,2]上遞減,
∴f(x)的最小值為
綜上可知:①當(dāng)a=0時(shí),f(x)的最小值為f(0)=0;
②當(dāng)0<a<2時(shí),f(x)的最小值為f(a)=-a2;
③當(dāng)a≥2時(shí),f(x)的最小值為f(2)=
分析:(Ⅰ)利用導(dǎo)數(shù)的幾何意義即可求出切線的斜率,再利用點(diǎn)斜式即可求出切線的方程;
(Ⅱ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過對(duì)a分類討論得出其單調(diào)性,進(jìn)而即可求出其最小值.
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)的最值的方法及其幾何意義、分類討論的思想方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:指數(shù)、對(duì)數(shù)函數(shù)(解析版) 題型:解答題

已知函數(shù)(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.
(文) 記(2)中的函數(shù)的圖象為曲線C,試問曲線C是否為中心對(duì)稱圖形?若是,請(qǐng)求出對(duì)稱中心的坐標(biāo)并加以證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺預(yù)測(cè)數(shù)學(xué)試卷13(理科)(解析版) 題型:解答題

已知函數(shù)(a≠0且a≠1).
(Ⅰ)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)已知當(dāng)x>0時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(Ⅲ)記(Ⅱ)中的函數(shù)的圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動(dòng)點(diǎn),已知函數(shù)a≠0).

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對(duì)于函數(shù),若存在x0∈R,使成立,則稱x0的不動(dòng)點(diǎn)。已知函數(shù)a≠0)。

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱,求的的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(浙江卷)解析版(文) 題型:選擇題

 [番茄花園1]  已知函數(shù) =

(A)0                (B)1                (C)2                (D)3

 


 [番茄花園1]1.

查看答案和解析>>

同步練習(xí)冊(cè)答案