精英家教網 > 高中數學 > 題目詳情

不等式2|x|+|x-1|<2的解集是_________

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式|2-x|≥1的解集是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式
(2-x)2x(x+1)(x-3)
≥0
的解集為
{x|-1<x≤0或x>3}
{x|-1<x≤0或x>3}

查看答案和解析>>

科目:高中數學 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:
設A=[0,1],若不等式21-x-a>0在A上有解,求實數a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
∴a<2即為所求.
學習以上問題的解法,解決下面的問題:
(1)已知函數f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x-m(m∈R),g(x)=ax2+
12
ax+1
(a∈R),h(x)=2|x-a|
(Ⅰ)設A:存在實數x使得f(x)≤0(m∈R)成立;B:當a=-2時,不等式g(x)>0有解.若“A”是“B”的必要不充分條件,求實數m的取值范圍;
(Ⅱ)設C:函數y=h(x)在區(qū)間(4,+∞)上單調遞增;D:?x∈R,不等式g(x)>0恒成立.請問,是否存在實數a使“非C”為真命題且“C∨D”也為真命題?若存在,請求實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案