17.定義運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則ω的最小值是(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{3}{4}$

分析 化函數(shù)f(x)為余弦型函數(shù),寫出f(x)圖象向左平移$\frac{2π}{3}$個(gè)單位后對應(yīng)的函數(shù)y,由函數(shù)y為偶函數(shù),求出ω的最小值.

解答 解:函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$=$\sqrt{3}$cosωx-sinωx=2cos(ωx+$\frac{π}{6}$)(ω>0),
f(x)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得圖象對應(yīng)的函數(shù)為
y=2cos[ω(x+$\frac{2π}{3}$)+$\frac{π}{6}$]=2cos(ωx+$\frac{2ωπ}{3}$+$\frac{π}{6}$);
又函數(shù)y為偶函數(shù),
∴$\frac{2ωπ}{3}$+$\frac{π}{6}$=kπ,k∈Z,
解得ω=$\frac{3k}{2}$-$\frac{3}{12}$,k∈Z;
當(dāng)k=1時(shí),ω取得最小值是$\frac{5}{4}$.
故選:B.

點(diǎn)評 本題考查了三角函數(shù)的化簡與圖象平移的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若三個(gè)非零實(shí)數(shù):x(y-z)、y(z-x)、z(y-x)成等比數(shù)列,則其公比q=$\frac{{1±\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)m,n為空間兩條不同的直線,α、β為空間兩個(gè)不同的平面,給出下列命題:
①若m∥α,m∥β,則α∥β;
②若m∥α,m∥n,則n∥α;
③若m⊥α,m∥β,則α⊥β;
④若m⊥α,α∥β,則m⊥β
寫出所有正確命題的序號③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.高二一班有A,B兩個(gè)社會實(shí)踐活動小組,每組七個(gè)人,現(xiàn)從每組中各選出一個(gè)人分別完成一項(xiàng)手工作品,每位成員完成作品所需要的時(shí)間(單位:小時(shí))如下所示
A組:10,11,12,13,14,15,16;
B組:12,13,15,16,17,14,a
假設(shè)A、B兩組每位成員被選出的可能性均等,從A組選出的人記為甲,從B組選出的人記為乙
(1)如果a=18,求甲所用時(shí)間比乙所用時(shí)間長的概率;
(2)如果a=14,設(shè)甲與乙所用時(shí)間都低于15,記甲與乙的所用時(shí)間的差的絕對值為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=5x2+1( 。
A.在(0,+∞)內(nèi)是增函數(shù)B.在(1,+∞)內(nèi)是增函數(shù)
C.在(-∞,0)內(nèi)是增函數(shù)D.在(-∞,1)內(nèi)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足|PQ|=2,∠PF2Q=90°,且△PF2Q的面積為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l不經(jīng)過點(diǎn)A(0,1),且與橢圓交于M,N兩點(diǎn),若以MN為直徑的圓經(jīng)過點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow$,則2$\overrightarrow{a}$+3$\overrightarrow$等于( 。
A.(-5,-10)B.(-3,-6)C.(-4,-8)D.(-2,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若P(ξ>2)=0.15,則P(0≤ξ≤1)=0.35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)A、B、C在一條直線上,滿足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn).
(1)求實(shí)數(shù)m,n的值;
(2)設(shè)△AOC的重心為G,且$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{OB}$,求cos∠AOC的值.

查看答案和解析>>

同步練習(xí)冊答案