【題目】已知數(shù)列{an}滿足nan+2﹣(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1對n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是 .
【答案】[0,+∞)
【解析】解:由nan+2﹣(n+2)an=λ(n2+2n)=λn(n+2), 得 ,
∴數(shù)列{ }的奇數(shù)項與偶數(shù)項均是以λ為公差的等差數(shù)列,
∵a1=1,a2=2,
∴當(dāng)n為奇數(shù)時, ,
∴ ;
當(dāng)n為偶數(shù)時, ,
∴ .
當(dāng)n為奇數(shù)時,由an<an+1 , 得 < ,
即λ(n﹣1)>﹣2.
若n=1,λ∈R,若n>1則λ> ,∴λ≥0;
當(dāng)n為偶數(shù)時,由an<an+1 , 得 < ,
即3nλ>﹣2,∴λ> ,即λ≥0.
綜上,λ的取值范圍為[0,+∞).
所以答案是:[0,+∞).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點(diǎn)的坐標(biāo)為A(0,1),B(1,0),C(0,﹣2),O為坐標(biāo)原點(diǎn),動點(diǎn)M滿足| |=1,則| 的最大值是( )
A.
B.
C. ﹣1
D. ﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(I)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是∠A,∠B,∠C的對邊.若(a+b﹣c)(a+b+c)=ab,c= ,當(dāng)ab取得最大值時,S△ABC= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|﹣|2x﹣a|,a∈R.
(1)若不等式f(x)≤﹣5的解集非空,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,e為自然對數(shù)的底數(shù).
(1)求曲線y=f(x)在x=e﹣2處的切線方程;
(2)關(guān)于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求實(shí)數(shù)λ的值;
(3)關(guān)于x的方程f(x)=a有兩個實(shí)根x1 , x2 , 求證:|x1﹣x2|<2a+1+e﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ(a≠0).
(Ⅰ)求圓C的直角坐標(biāo)系方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長等于圓C的半徑長的 倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1: + =1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com