【題目】已知集合是集合 的一個含有個元素的子集.

(Ⅰ)當(dāng)時,

設(shè)

(i)寫出方程的解;

(ii)若方程至少有三組不同的解,寫出的所有可能取值.

(Ⅱ)證明:對任意一個,存在正整數(shù)使得方程 至少有三組不同的解.

【答案】)(,;(證明見解析.

【解析】試題分析:)(利用列舉法可得方程的解有: ;(列出集合的從小到大個數(shù)中相鄰兩數(shù)的差,中間隔一數(shù)的兩數(shù)差,中間相隔二數(shù)的兩數(shù)差,中間隔一數(shù)的兩數(shù)差,可發(fā)現(xiàn)只有出現(xiàn), 出現(xiàn),其余都不超過,從而可得結(jié)果;不妨設(shè), ,個差數(shù)假設(shè)不存在滿足條件的,根據(jù)的取值范圍可推出矛盾,假設(shè)不成立,從而可得結(jié)論.

假設(shè)不存在滿足條件的,則這個數(shù)中至多兩個、兩個、兩個、兩個、兩個、兩個,.

試題解析:)()方程的解有:

以下規(guī)定兩數(shù)的差均為正,:

列出集合的從小到大個數(shù)中相鄰兩數(shù)的差: ;

中間隔一數(shù)的兩數(shù)差(即上一列差數(shù)中相鄰兩數(shù)和):4,5,6,6,5,4;

中間相隔二數(shù)的兩數(shù)差: ;

中間相隔三數(shù)的兩數(shù)差: ;

中間相隔四數(shù)的兩數(shù)差: ;

中間相隔五數(shù)的兩數(shù)差: ;

中間隔一數(shù)的兩數(shù)差: .

個差數(shù)中,只有出現(xiàn), 出現(xiàn),其余都不超過,

所以的可能取值有.

證明:不妨設(shè)

, ,個差數(shù).

假設(shè)不存在滿足條件的,則這個數(shù)中至多兩個、兩個、兩個、兩個、兩個、兩個,從而

這與矛盾,所以結(jié)論成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與函數(shù)g(x)的圖像關(guān)于原點對稱,且f(x)= +2x, 若函數(shù)F(x)=g(x)-f(x)+1在區(qū)間上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的最大值和最小值;

2)若關(guān)于x的方程上有兩個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形.

(1)求出,,,并猜測的表達(dá)式;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線l

的單調(diào)增區(qū)間;

求證:對于任意,直線l都不是線的切線;

試確定曲線與直線l的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一對夫婦為了給他們的獨生孩子支付將來上大學(xué)的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人工智能的興起,越來越多的事物可以用機(jī)器人替代,某學(xué)校科技小組自制了一個機(jī)器人小青,共可以解決函數(shù)、解析幾何、立體幾何三種題型已知一套試卷共有該三種題型題目20道,小青解決一個函數(shù)題需要6分鐘,解決一個解析幾何題需要3分鐘,解決一個立體幾何題需要9分鐘已知小青一次開機(jī)工作時間不能超過90分鐘,若答對一道函數(shù)題給8分,答對一道解析幾何題給6分,答對一道立體幾何題給9該興趣小組通過合理分配題目可使小青在一次開機(jī)工作時間內(nèi)做這套試卷得分最高,則最高得分為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬(底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中, , ,則陽馬的外接球的表面積是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案