9.已知雙曲線$\frac{x^2}{24}-\frac{y^2}{16}$=1,P為雙曲線上一點,F(xiàn)1,F(xiàn)2是雙曲線的兩個焦點,且∠F1PF2=60°,求△F1PF2的面積.

分析 由題意可得F2(2$\sqrt{10}$,0),F(xiàn)1 (-2$\sqrt{10}$,0),由余弦定理可得 PF1•PF2=64,由△F1PF2的面積S=$\frac{1}{2}$PF1•PF2sin60°,計算即可得到所求.

解答 解:由雙曲線$\frac{x^2}{24}-\frac{y^2}{16}$=1的a=$\sqrt{24}$,b=4,c=2$\sqrt{10}$,
F2(2$\sqrt{10}$,0),F(xiàn)1 (-2$\sqrt{10}$,0),
由余弦定理可得,
F1F22=160=PF12+PF22-2PF1•PF2cos60°
=(PF1-PF22+PF1•PF2=96+PF1•PF2
∴PF1•PF2=64.
則△F1PF2的面積S=$\frac{1}{2}$PF1•PF2sin60°=$\frac{1}{2}$×64×$\frac{\sqrt{3}}{2}$=16$\sqrt{3}$.
故答案為:16$\sqrt{3}$.

點評 本題考查雙曲線的定義和標準方程,余弦定理,以及雙曲線的簡單性質的應用,求出PF1•PF2的值,是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.設等差數(shù)列{an}的前n項和為Sn,若S9=54,則a2+a4+a9=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.圓的半徑是1,弧度數(shù)為3的圓心角所對扇形的面積等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.△ABC中,若BC=4,cosB=$\frac{1}{4}$,則sinB=$\frac{\sqrt{15}}{4}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值為:-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在銳角△ABC中,a,b,c分別是角A,B,C所對的邊,且$\sqrt{3}$a=2csinA.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$ )的圖象與x軸的一個交點為(-$\frac{π}{6}$,0),與此交點距離最短的最高點坐標是($\frac{π}{12}$,1).
(1)求函數(shù)f(x)的表達式.
(2)求方程f(x)=a (-1<a<0)在[0,2π]內的所有實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.(1)現(xiàn)有5名男生和3名女生.若從中選5人,且要求女生只有2名,站成一排,共有多少種不同的排法?
(2)從{-3,-2,-1,0,1,2,3,4}中任選三個不同元素作為二次函數(shù)y=ax2+bx+c的系數(shù),問能組成多少條經過原點且頂點在第一象限或第三象限的拋物線?
(3)已知($\frac{1}{2}$+2x)n,若展開式中第5項、第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)、g(x)滿足如表格:
2x+13579
f(2x+1)1234
x1234
g(x)3579
若g[f(2x+1)]=3,則x=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設集合A={x∈Q|x>-1},則正確的是( 。
A.∅∈AB.{$\sqrt{2}$}⊆AC.$\sqrt{3}$∈AD.$\sqrt{2}$∉A

查看答案和解析>>

同步練習冊答案