(北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交于不同的兩點(diǎn),證明的大小為定值.
,90度
【解法1】本題主要考查雙曲線的標(biāo)準(zhǔn)方程、圓的切線方程等基礎(chǔ)知識(shí),考查曲線和方程
的關(guān)系等解析幾何的基本思想方法,考查推理、運(yùn)算能力.
(Ⅰ)由題意,得,解得,
∴,∴所求雙曲線的方程為.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線方程為,
化簡(jiǎn)得.
由及得,
∵切線與雙曲線C交于不同的兩點(diǎn)A、B,且,
∴,且,
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∵,且
,
.
∴ 的大小為.
【解法2】(Ⅰ)同解法1.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線方程為,
化簡(jiǎn)得.由及得
①
②
∵切線與雙曲線C交于不同的兩點(diǎn)A、B,且,
∴,設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∴,∴ 的大小為.
(∵且,∴,從而當(dāng)時(shí),方程①和方程②的判別式均大于零).
【解法1】本題主要考查雙曲線的標(biāo)準(zhǔn)方程、圓的切線方程等基礎(chǔ)知識(shí),考查曲線和方程
的關(guān)系等解析幾何的基本思想方法,考查推理、運(yùn)算能力.
(Ⅰ)由題意,得,解得,
∴,∴所求雙曲線的方程為.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線方程為,
化簡(jiǎn)得.
由及得,
∵切線與雙曲線C交于不同的兩點(diǎn)A、B,且,
∴,且,
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∵,且
,
.
∴ 的大小為.
【解法2】(Ⅰ)同解法1.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線方程為,
化簡(jiǎn)得.由及得
①
②
∵切線與雙曲線C交于不同的兩點(diǎn)A、B,且,
∴,設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∴,∴ 的大小為度.
(∵且,∴,從而當(dāng)時(shí),方程①和方程②的判別式均大于零).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷理)(本小題共14分)
已知菱形的頂點(diǎn)在橢圓上,對(duì)角線所在直線的斜率為1.
(Ⅰ)當(dāng)直線過點(diǎn)時(shí),求直線的方程;
(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com