2.已知${log_a}\frac{3}{5}$<1,則a的取值范圍是$(0,\frac{3}{5})$∪(1,+∞).

分析 由${log_a}\frac{3}{5}$<1=logaa,利用對數(shù)函數(shù)的單調(diào)性可得$\left\{\begin{array}{l}{0<a<1}\\{\frac{3}{5}>a}\end{array}\right.$,或$\left\{\begin{array}{l}{a>1}\\{a>\frac{3}{5}}\end{array}\right.$,解出即可得出.

解答 解:∵${log_a}\frac{3}{5}$<1=logaa,∴$\left\{\begin{array}{l}{0<a<1}\\{\frac{3}{5}>a}\end{array}\right.$,或$\left\{\begin{array}{l}{a>1}\\{a>\frac{3}{5}}\end{array}\right.$,
解得0<a<$\frac{3}{5}$,或a>1.
故答案為:$(0,\frac{3}{5})$∪(1,+∞).

點評 本題考查了函數(shù)的單調(diào)性、不等式的解法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{({m^2}-1){x^2}-(1-m)x+1}$的值域為[0.+∞),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.組數(shù)據(jù)2,x,4,6,10的平均值是5,則此組數(shù)據(jù)的方差是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|3≤x<7},B={x|log2(x-2)<3},求∁R(A∪B),(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A是由0,m,m2-3m+2三個元素組成的集合,且2∈A,則實數(shù)m的值為(  )
A.2B.3C.0或3D.0或2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖是底面邊長為2,高為2的正三棱柱除去上面的一個高為1的三棱錐后剩下的部分構(gòu)成的幾何體的直觀圖,則該幾何體的體積為$\frac{5\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{ln(|x|)}{sinx}$(x≠kπ,k∈Z)的部分圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}和{bn}滿足a1=2,b1=1,${a_{n+1}}=2{a_n}(n∈{N^*})$,${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+…+\frac{1}{n}{b_n}={b_{n+1}}-1(n∈{N^*})$
(1)求an與bn
(2)記cn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{_{n}b}_{n+1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知a=-($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=log23,c=sin880°,把a,b,c按從小到大的順序是a<c<b.

查看答案和解析>>

同步練習(xí)冊答案