圓周上有n(n>5)個(gè)點(diǎn),用線段將它們中的任意兩個(gè)點(diǎn)相連,這些線段中任意三條在圓內(nèi)都不交于一點(diǎn),問:這些線段能構(gòu)成多少個(gè)頂點(diǎn)在圓內(nèi)的三角形?
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問題
專題:計(jì)算題,排列組合
分析:這個(gè)可以用構(gòu)造法,一個(gè)頂點(diǎn)在圓內(nèi)的三角形對(duì)應(yīng)圓上的6個(gè)點(diǎn),從而解得.
解答: 解:將三角形的3條邊延長(zhǎng),與圓相交,可以得到三條弦,每條弦2個(gè)端點(diǎn),
所以一個(gè)頂點(diǎn)在圓內(nèi)的三角形對(duì)應(yīng)圓上的6個(gè)點(diǎn),
所以,共有
C
6
n
個(gè)頂點(diǎn)在圓內(nèi)的三角形.
點(diǎn)評(píng):本題考查了排列組合的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2)在直線mx+ny-1=0(mn>0)上,則
1
m
+
2
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱柱ABC-A1B1C1中,D為BC上一點(diǎn),D1為B1C1的中點(diǎn),A1B∥平面ADC1
(1)證明:A1D1∥平面ADC1;
(2)若AA1⊥平面ABC,AA1=3,等邊△ABC的面積為4
3
,求平面A1AB與平面ADC1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-2y+2=0經(jīng)過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線x=
10
3
分別交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)求線段MN的長(zhǎng)度的最小值.
(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上有兩點(diǎn)T1,T2,使得△T1SB,△T2SB的面積都為
1
5
,求直線T1T2在y軸上的截距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面邊長(zhǎng)為1,M是BC的中點(diǎn),在直線CC1上是否存在一點(diǎn)N,使得MN⊥AB1?若存在,求出它的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,當(dāng)x>0時(shí),f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有7個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A、(2
2
-2,2
6
-4)
B、(
3
+2,
3
+
6
C、(2
2
+2,2
6
+4)
D、(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=
-2x+1
2x+1
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等比數(shù)列,則數(shù)列{an-an+1},{an•an+1}是什么數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓E:(x-5)2+y2=9相切,則雙曲線C的離心率等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案