如圖,A,B是海平面上的兩個(gè)小島,為測(cè)量A,B兩島間的距離,測(cè)量船以15海里/小時(shí)的速度沿既定直線CD航行,在t1時(shí)刻航行到C處,測(cè)得∠ACB=75°,∠ACD=120°,1小時(shí)后,測(cè)量船到達(dá)D處,測(cè)得∠ADC=30°,∠ADB=45°,求A,B兩小島間的距離.(注:A、B、C、D四點(diǎn)共面)
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:綜合題,解三角形
分析:在在△ACD中,由正弦定理求出AD,在△BCD中,由正弦定理求出BD,在△ABD中,由余弦定理得AB
解答: 解:由已知得CD=15,∠ACD=120°∠ADC=30°,∴∠CAD=30°,
在△ACD中,由正弦定理得
15
sin30°
=
AD
sin120°
,…(2分)
∴AD=15
3
;…(4分)
∵∠BDC=75°,∠BCD=45°,∴∠CBD=60°,
在△BCD中,由正弦定理得,
15
sin60°
=
BD
sin45°
,…(6分)
∴BD=5
6
;…(8分)
在△ABD中,∠ADB=45°,由余弦定理得AB=
(15
3
)2+(5
6
)2-2•15
3
•5
6
•cos45°
=5
15
…(10分)
故兩小島間的距離為5
15
海里.…(12分)
點(diǎn)評(píng):本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查正弦定理、余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為P(x1,y1),Q(x2,y2)兩點(diǎn)之間的“折線距離”,則橢圓
x2
2
+y2=1
上一點(diǎn)P與直線3x+4y-12=0上一點(diǎn)Q的“折線距離”的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入x=7,則輸出k的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
x2-8x+20
mx2-mx-1
<0對(duì)?x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)畫出如圖幾何體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,又∠ACB=120°,AB⊥PC.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非負(fù)數(shù)a、b、c滿足a+b+c=1,證明:
ab
c+1
+
bc
a+1
+
ca
b+1
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,AB∥CD,△PAB和△PAD是兩個(gè)邊長為2的正三角形.DC=4,PD⊥PB,點(diǎn)E在線段CD上.
(Ⅰ)當(dāng)
DE
EC
為何值時(shí),AE⊥面PBD:
(Ⅱ)求直線CB與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=
1
3
PC
,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案