已知橢圓:()過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動點在直線上,過作直線交橢圓于兩點,且為線段中點,再過作直線.證明:直線恒過定點,并求出該定點的坐標.
(Ⅰ)(Ⅱ)直線恒過定點
解析試題分析:(Ⅰ)點在橢圓上,將其代入橢圓方程,又因為,且,解方程組可得。(Ⅱ)點在直線上,則可得。當直線的斜率存在時設斜率為,得到直線方程,聯(lián)立方程消掉得關于的一元二次方程。再根據(jù)韋達定理可得根與系數(shù)的關系。因為為中點,根據(jù)點的橫坐標解得。因為故可得直線的斜率,及其含參數(shù)的方程。分析可得直線是否恒過定點。注意還要再討論當直線的斜率不存在的情況。
試題解析:解:(Ⅰ)因為點在橢圓上,所以,
所以, 1分
因為橢圓的離心率為,所以,即, 2分
解得, 4分
所以橢圓的方程為. 5分
(Ⅱ)設,,
①當直線的斜率存在時,設直線的方程為,,,
由得, 7分
所以, 8分
因為為中點,所以,即.
所以, 9分
因為直線,所以,
所以直線的方程為,即 ,
顯然直線恒過定點. 11分
②當直線的斜率不存在時,直線的方程為,
此時直線為軸,也過點. 13分
綜上所述直線恒過定點. 14
科目:高中數(shù)學 來源: 題型:解答題
已知平面五邊形關于直線對稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))
(1)證明:平面;
(2)求平面與平面的所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓: 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 :(其中)與橢圓 相交于兩點,且滿足:.
(1)試用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(Ⅰ)當點在圓上運動時,求點的軌跡方程;
(Ⅱ)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:經(jīng)過如下五個點中的三個點:,,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的一個焦點是(1,0),兩個焦點與短軸的一個端點構成等邊三角形.
(1)求橢圓C的方程;
(2)過點Q(4,0)且不與坐標軸垂直的直線l交橢圓C于A、B兩點,設點A關于x軸的
對稱點為A1.求證:直線A1B過x軸上一定點,并求出此定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為且與雙曲線:有共同焦點.
(1)求橢圓的方程;
(2)在橢圓落在第一象限的圖像上任取一點作的切線,求與坐標軸圍成的三角形的面積的最小值;
(3)設橢圓的左、右頂點分別為,過橢圓上的一點作軸的垂線交軸于點,若點滿足,,連結交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設過點P,且斜率為-的直線與曲線M相交于A、B兩點. 問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com