-n的展開式中各項(xiàng)系數(shù)之和為64,則正整數(shù)n=    ,展開式的常數(shù)項(xiàng)為   
【答案】分析:依據(jù)二項(xiàng)式系數(shù)和為2n,列出方程求出n,利用二項(xiàng)展開式的通項(xiàng)公式求出常數(shù)項(xiàng)
解答:解:∵-n的展開式中各項(xiàng)系數(shù)之和為2n=64,
解得n=6,
則展開式的常數(shù)項(xiàng)為 C63(-3=-540.
故答案為:6,-540.
點(diǎn)評(píng):本題考查二項(xiàng)式系數(shù)的性質(zhì)及二項(xiàng)展開式的通項(xiàng)公式.二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-2-3人教A版 人教A版 題型:013

若()n的展開式中各項(xiàng)系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為

[  ]
A.

-540

B.

-162

C.

162

D.

540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若()n的展開式中各項(xiàng)系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為(    )

A.-540               B.-162                C.162                  D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若()n的展開式中各項(xiàng)系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為(    )

A.-540                 B.-162               C.162                D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若()n的展開式中各項(xiàng)系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為(    )

A.-540            B.-162               C.162             D.540

查看答案和解析>>

同步練習(xí)冊(cè)答案