5.已知在實數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+1)是奇函數(shù),且當(dāng)x≥1時,$\frac{1}{f′(x)}$>1(其中f′(x)為f(x)的導(dǎo)函數(shù)),則不等式f(x)>x-1的解集是( 。
A.(0,1)B.(1,+∞)C.(-∞,1)D.(-∞,0)

分析 確定f(1)=0,令g(x)=f(x)-x,則g′(x)=f′(x)-1<0,函數(shù)在R上單調(diào)遞減,即可求出不等式f(x)>x-1的解集.

解答 解:∵f(x+1)是奇函數(shù),
∴f(x)關(guān)于(1,0)對稱,f(1)=0,
∵當(dāng)x≥1時,$\frac{1}{f′(x)}$>1,
∴0<f′(x)<1.
令g(x)=f(x)-x,
則g′(x)=f′(x)-1<0,
∴(1,+∞)上單調(diào)遞減,
結(jié)合對稱性可得:函數(shù)在R上單調(diào)遞減,
∵g(1)=f(1)-1=-1,
∴不等式f(x)>x-1可化為g(x)>g(1),
∴x<1,
故選:C.

點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性,考查學(xué)生解不等式的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若曲線C1:y=1+lnx與曲線C2:y=x3-2x2+kx有公共點(diǎn),則實數(shù)k的取值范圍為(  )
A.(0,2]B.(-∞,2]C.(-∞,1]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=ax(a>0且a≠1)在[-2,1]上的最大值為4,最小值為b,且函數(shù)g(x)=(2-7b)x是減函數(shù),則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對于實數(shù)m,n定義運(yùn)算“⊕”:m⊕n=$\left\{\begin{array}{l}{-{m}^{2}+2mn-1,m≤n}\\{{n}^{2}-mn,m>n}\end{array}\right.$設(shè)f(x)=(2x-1)⊕(x-1),且關(guān)于x的方程f(x)=a恰有三個互不相等的實數(shù)根x1,x2,x3,則x1+x2+x3的取值范圍是( 。
A.(-$\frac{7}{8}$,1)B.(-$\frac{1}{8}$,0)C.( $\frac{7}{8}$,1)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)在其定義域R上單調(diào)遞增,則滿足f(2x-2)<f(2)的x的取值范圍是( 。
A.(-∞,0)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對于任意實數(shù)x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[-2.1]=-3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}12x-x{\;}^{3},x≤0\\-2x,x>0\end{array}$,當(dāng)x∈(-∞,m]時,f(x)的取值范圍為[-16,+∞),則實數(shù)m的取值范圍是[-2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),對任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.
(1)求f(1)的值;
(2)解不等式f(m-2)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.命題“原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱”的否定是(  )
A.原函數(shù)與反函數(shù)的圖象關(guān)于y=-x對稱
B.原函數(shù)不與反函數(shù)的圖象關(guān)于y=x對稱
C.存在一個原函數(shù)與反函數(shù)的圖象不關(guān)于y=x對稱
D.存在原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱

查看答案和解析>>

同步練習(xí)冊答案