設(shè)計(jì)一種正四棱柱形冰箱,它有一個(gè)冷凍室和一個(gè)冷藏室,冷藏室用兩層隔板分為三個(gè)抽屜,問:如何設(shè)計(jì)它的外形尺寸,能使得冰箱體積為定值時(shí),它的表面和三層隔板(包括冷凍室的底層)面積之和S值最小(參考數(shù)據(jù):,,
 冰箱底面正方形邊長為,高度為時(shí),它的表面和三層隔板(包括冷凍室的底層)面積之和S值最小
 設(shè)水箱的底面邊長為,則高為,

法1: ,由,
∴函數(shù)S在上遞減,在上遞增,∴時(shí),S有最小值,此時(shí)
法2:(當(dāng)且僅當(dāng)時(shí),取等號)∴時(shí),S有最小值,此時(shí)
答:冰箱底面正方形邊長為,高度為時(shí),它的表面和三層隔板(包括冷凍室的底層)面積之和S值最。13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)的定義域D關(guān)于原點(diǎn)對稱,0∈D,且存在常數(shù)a>0,使f(a)=1,又,
(1)寫出f(x)的一個(gè)函數(shù)解析式,并說明其符合題設(shè)條件;
(2)判斷并證明函數(shù)f(x)的奇偶性;
(3)若存在正常數(shù)T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)對于x∈D都成立,則都稱f(x)是周期函數(shù),T為周期;試問f(x)是不是周期函數(shù)?若是,則求出它的一個(gè)周期T;若不是,則說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)試判斷上的單調(diào)性;
(2)當(dāng)時(shí),求證:函數(shù)的值域的長度大于(閉區(qū)間[m,n]的長度定義為nm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為常數(shù),且。
(Ⅰ)求對所有的實(shí)數(shù)成立的充要條件(用表示);
(Ⅱ)設(shè)為兩實(shí)數(shù),,若,求證:在區(qū)間上的單調(diào)增區(qū)間的長度和為(閉區(qū)間的長度定義為)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134102242296.gif" style="vertical-align:middle;" />,且. 設(shè)點(diǎn)是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)分別作直線軸的垂線,垂足分別為
(1)求的值;
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)若a,b,c是兩兩不相等的正數(shù),且a,b,c成等比數(shù)列,試判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)是否為R上的“平底型”函數(shù)?   并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對一切R恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求該函數(shù)的定義域和值域;
(2)如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是集合A到集合B的映射,如果B=,則   .

查看答案和解析>>

同步練習(xí)冊答案