18.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),則$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

分析 設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,利用兩個(gè)向量的數(shù)量積的定義、兩個(gè)向量的數(shù)量積公式,求得cosθ的值,可得θ的值.

解答 解:∵向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,
則由$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cosθ=cosθ=-$\frac{1}{2}$+0=-$\frac{1}{2}$,
∴θ=120°,
故答案為:120°.

點(diǎn)評 本題主要考查兩個(gè)向量的數(shù)量積的定義、兩個(gè)向量的數(shù)量積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.給定兩個(gè)命題,命題p:對?x∈R,不等式ax2+ax+1>0恒成立,命題q:關(guān)于x方程x2-x+a=0有實(shí)數(shù)根;若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)a范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)A(0,-1),拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線AF與拋物線C在第一象限交于M點(diǎn),$\overrightarrow{AF}=\overrightarrow{FM}$,O為坐標(biāo)原點(diǎn),則△OAM的面積為( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線y=x+b平分圓x2+y2-8x+2y-2=0的周長,則b=(  )
A.3B.5C.-3D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)$f(x)=\frac{{a{x^2}-b}}{x}$,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則f(x)的解析式為f(x)=x-$\frac{3}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個(gè)等比數(shù)列{an}中,a1+a4=28,a2+a3=12,求這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=log0.5(sin2x+cos2x)單調(diào)減區(qū)間為(kπ-$\frac{π}{8}$,kπ+$\frac{π}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(ⅰ)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ⅱ)年宣傳費(fèi)x為何值時(shí),年利率的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊答案