如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓
的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,,則的周長的取值范圍是_______________.
.

試題分析:易知圓的圓心坐標(biāo)為,則圓心為拋物線的焦點(diǎn),圓與拋物線在第一象限交于點(diǎn)

作拋物線的準(zhǔn)線,過點(diǎn)垂直于直線,垂足為點(diǎn),由拋物線的定義可知
,則,當(dāng)點(diǎn)位于圓軸的交點(diǎn)時(shí),取最大值,由于點(diǎn)在實(shí)線上運(yùn)動(dòng),因此當(dāng)點(diǎn)與點(diǎn)重合時(shí),取最小值為,此時(shí)重合,由于、構(gòu)成三角形,因此,所以,因此的周長的取值范圍是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓心在直線上的圓軸的正半軸相切,圓軸所得弦的長為,則圓的標(biāo)準(zhǔn)方程為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•湖北)如圖,直角坐標(biāo)系xOy所在平面為α,直角坐標(biāo)系x′Oy′(其中y′與y軸重合)所在的平面為β,∠xOx′=45°.
(1)已知平面β內(nèi)有一點(diǎn)P′(2,2),則點(diǎn)P′在平面α內(nèi)的射影P的坐標(biāo)為 _________ ;
(2)已知平面β內(nèi)的曲線C′的方程是(x′﹣2+2y2﹣2=0,則曲線C′在平面α內(nèi)的射影C的方程是 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(15分)已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為,且||=2,點(diǎn)(1,)在該橢圓上.
(1)求橢圓C的方程;
(2)過的直線與橢圓C相交于A,B兩點(diǎn),以為圓心為半徑的圓與直線相切,求AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓x2+y2-2kx+2y+2=0(k>0)與兩坐標(biāo)軸無公共點(diǎn),那么實(shí)數(shù)k的取值范圍為(    )
A.-1<k<1B.1<k<
C.1<k<2D.<k<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于原點(diǎn)對(duì)稱的圓的方程是             ____  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)的軌跡方程是(  )
A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中,為直徑的圓交,則的長為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案