17.已知直線l?平面α,直線m?平面α,下面四個結(jié)論:①若l⊥α,則l⊥m;②若l∥α,則l∥m;③若l⊥m,則l⊥α;④若l∥m,則l∥α,其中正確的是( 。
A.①②④B.③④C.②③D.①④

分析 在①中,由線面垂直的性質(zhì)定理得l⊥m;在②中,l與m平行或異面;在③中,l與α不一定垂直;在④中,由線面平行的判定定理得l∥α.

解答 解:由直線l?平面α,直線m?平面α,知:
在①中,若l⊥α,則由線面垂直的性質(zhì)定理得l⊥m,故①正確;
在②中,若l∥α,則l與m平行或異面,故②錯誤;
在③中,若l⊥m,則l與α不一定垂直,故③錯誤;
在④中,若l∥m,則由線面平行的判定定理得l∥α,故④正確.
故選:D.

點(diǎn)評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A(2,4)關(guān)于直線x-y+1=0對稱的點(diǎn)為B,則B滿足的直線方程為( 。
A.x+y=0B.x-y+2=0C.x+y-5=0D.x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex(x∈R).
(1)證明:曲線y=f(x)與曲線$y=\frac{1}{2}{x^2}+x+1$有唯一公共點(diǎn);
(2)設(shè)a<b,比較$f(\frac{a+b}{2})$與$\frac{f(b)-f(a)}{b-a}$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.A=$\left\{{(x,y)\left|{y≤\left.{\sqrt{4-{x^2}},y≥0}\right\}}\right.}$,B={(x,y)|x+y≥2},則A∩B所對應(yīng)區(qū)域面積為( 。
A.B.π-2C.πD.π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{{e}^{x}}{ax}$(a>0)
(1)求函數(shù)f(x)的圖象在x=2處的切線方程;
(2)當(dāng)a=1時,求f(x)在[t,t+1](t>0)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.A公司有職工代表120人,B公司有職工代表100人,現(xiàn)因A,B兩公司合并,需用分層抽樣的方法在這兩個公司的職工代表中選取11人作為企業(yè)資產(chǎn)評估監(jiān)督員,應(yīng)在A公司中選取6人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知,如圖,P是平面ABC外一點(diǎn),PA不垂直于平面ABC,E,F(xiàn)分別是線段AC,PC的中點(diǎn),D是線段AB上一點(diǎn),AB=AC,PB=PC,DE⊥EF.
(1)求證:PA⊥BC;
(2)求證:BC∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{6}{x-1}$-$\sqrt{x+4}$,求函數(shù)f(x)的定義域[-4,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)計(jì)一個計(jì)算1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{9}^{2}}$+$\frac{1}{1{0}^{2}}$值的一個程序框圖.

查看答案和解析>>

同步練習(xí)冊答案