【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速單位: 與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.

1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;

(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?

【答案】(1), ;(224300

【解析】試題分析 :(1)由,可得, .

2)由題,解得: ,故其耗氧量至多需要24300個單位.

試題解析:(1)由題意,得,

解得: , .

∴游速與其耗氧量單位數(shù)之間的函數(shù)解析式為.

2)由題意,有,,

由對數(shù)函數(shù)的單調(diào)性,有,解得:

∴當一條鮭魚的游速不高于時,其耗氧量至多需要24300個單位.

點晴:解決函數(shù)模型應(yīng)用的解答題,還有以下幾點容易造成失分:①讀不懂實際背景,不能將實際問題轉(zhuǎn)化為函數(shù)模型.②對涉及的相關(guān)公式,記憶錯誤.③在求解的過程中計算錯誤.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.含有絕對值的問題突破口在于分段去絕對值,分段后在各段討論最值的情況.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 存在兩個極值點.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)設(shè)x1和x2分別是f(x)的兩個極值點且x1<x2 , 證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題px∈R,x ≥2;命題qx0 ,使sin x0+cos x0 ,
則下列命題中為真命題的是( )
A.( p)∧q
B.p∧( q)
C.( p)∧( q)
D.pq

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱 中,底面 是邊長為2的正三角形, 是棱 的中點,且 .

(1)試在棱 上確定一點 ,使 平面
(2)當點 在棱 中點時,求直線 與平面 所成角的大小的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形, , ,設(shè)是線段中點.

(1)求證: 平面;

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鮮奶店每天以每瓶3元的價格從牧場購進若干瓶鮮牛奶,然后以每瓶7元的價格出售.如果當天賣不完,剩下的鮮牛奶作垃圾處理.

(1)若鮮奶店一天購進30瓶鮮牛奶,求當天的利潤(單位:元)關(guān)于當天需求量(單位:瓶,)的函數(shù)解析式;

(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5);

(i)若該鮮奶店一天購進30瓶鮮牛奶,求這100天的日利潤(單位:元)的平均數(shù);

(ii) 若該鮮奶店一天購進30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是菱形所在平面外一點, , 是等邊三角形, , , 的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,BC區(qū)中分別有18,27,18個工廠

(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。

查看答案和解析>>

同步練習冊答案