17.已知f(x)=x-$\frac{a}{x}$(a>0),g(x)=2lnx.
(1)若對(duì)[1,+∞)內(nèi)的一切實(shí)數(shù)x,不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求最大的正整數(shù)k,使得對(duì)[e,3](e=2.71828…是自然對(duì)數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求證:$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$>ln(2n+1),(n∈N*).

分析 (1)由f(x)≥g(x),可得a≤x2-2xlnx恒成立,構(gòu)造函數(shù)h(x)=x2-2xlnx,利用導(dǎo)數(shù)求其最值得答案;
(2)當(dāng)a=1時(shí),利用導(dǎo)數(shù)求出函數(shù)f(x)的最大值,由不等式f(x1)+f(x2)+…+f(xk-1)≤16g(xk)左邊的最大值小于右邊的最小值列式求得k值;
(3)由(1)可得,x∈(1,+∞)時(shí),f(x)>g(x),即ln(x)<$\frac{1}{2}(x-\frac{1}{x})$.令$x=\frac{2k+1}{2k-1}$,得$ln\frac{2k+1}{2k-1}$<$\frac{1}{2}(\frac{2k+1}{2k-1}-\frac{2k-1}{2k+1})$,化簡(jiǎn)得ln(2k+1)-ln(2k-1)<$\frac{4k}{{k}^{2}-1}$,分別取k=1,2,3,…,n作和得答案.

解答 (1)解:由f(x)≥g(x),得$\frac{a}{x}$≤x-2lnx,
∵x≥1,∴要使不等式f(x)≥g(x)恒成立,只需a≤x2-2xlnx恒成立.
設(shè)h(x)=x2-2xlnx,則h′(x)=2x-2(lnx+x•$\frac{1}{x}$)=2x-2lnx-2,
∵h(yuǎn)′′(x)=2-$\frac{2}{x}$,∴當(dāng)x≥1時(shí),h''(x)≥h''(1)=0,則h′(x)是增函數(shù),
∴h′(x)≥h′(1)=0,則h(x)是增函數(shù),[h(x)]min=h(1)=1,
∴a≤1.
因此,實(shí)數(shù)a的取值范圍是0<a≤1;
(2)解:當(dāng)a=1時(shí),f(x)=x-$\frac{1}{x}$,∴$f'(x)=1+\frac{1}{x^2}>0$,
∴f(x)在[e,3]上是增函數(shù),f(x)在[e,3]上的最大值為f(3)=$\frac{8}{3}$.
要對(duì)[e,3]內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立,
必須使得不等式左邊的最大值小于或等于右邊的最小值,
當(dāng)x1=x2=…=xk-1=3時(shí),不等式左邊取得最大值,xk=e時(shí)不等式右邊取得最小值,
∴(k-1)×$\frac{8}{3}$≤16×2,解得k≤13.
因此,正整數(shù)k的最大值為13.
(3)證明:當(dāng)a=1時(shí),根據(jù)(1)的推導(dǎo)有,x∈(1,+∞)時(shí),f(x)>g(x),
即ln(x)<$\frac{1}{2}(x-\frac{1}{x})$.
令$x=\frac{2k+1}{2k-1}$,得$ln\frac{2k+1}{2k-1}$<$\frac{1}{2}(\frac{2k+1}{2k-1}-\frac{2k-1}{2k+1})$,
化簡(jiǎn)得ln(2k+1)-ln(2k-1)<$\frac{4k}{{k}^{2}-1}$,
∴l(xiāng)n(2n+1)=$\sum_{i=1}^{n}[ln(2i+1)-ln(2i-1)]$<$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$,
即$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$>ln(2n+1),(n∈N*).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,訓(xùn)練了利用函數(shù)構(gòu)造法證明函數(shù)不等式,考查邏輯思維能力及推理運(yùn)算能力,是壓軸題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.根據(jù)下列2×2列聯(lián)表,判斷“患肝病和嗜酒有關(guān)系”犯錯(cuò)誤的概率不會(huì)超過(guò)( 。
嗜酒不嗜酒總計(jì)
患肝病201030
不患肝病304575
總計(jì)5055105
卡方臨界值表
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.10%B.5%C.2.5%D.1%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1+2lnx}{x^2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)令g(x)=ax2-2lnx-1,若函數(shù)y=g(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.
(3)若存在x1,x2∈(0,+∞)且x1≠x2,使$\frac{{f({x_1})-f({x_2})}}{{ln{x_1}-ln{x_2}}}≤k$成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow m$=(2sinx,1),$\overrightarrow n$=($\sqrt{3}$cosx,2cos2x),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$-t.
( I)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范圍;
(II)在△ABC中,a,b,c分別是A,B,C所對(duì)的邊,當(dāng)t=3且f(A)=-1,b+c=2時(shí),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<$\frac{π}{2}$的部分圖象,如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)已知f(2x0)=-$\frac{{\sqrt{3}}}{2}$,x0∈(0,$\frac{5π}{6}$),求x0的值;
(3)若函數(shù)h(x)=2f(x)-a在[0,$\frac{4π}{3}$]上有兩個(gè)不同的零點(diǎn),試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.先后拋擲質(zhì)地均勻的硬幣兩次,則“一次正面向上,一次反面向上”的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知黃河游覽區(qū)有兩艘游船,兩艘游船每天上午11點(diǎn)出發(fā),下午3點(diǎn)至5點(diǎn)之間返回碼頭,假如碼頭只有一個(gè)泊位,每艘游船需要停靠碼頭15分鐘游客下完后即駛離碼頭,每艘油船返回時(shí)在下午3點(diǎn)至5點(diǎn)之間的任何一時(shí)刻?看a頭是等可能的,求你乘坐一艘游船游覽黃河游覽區(qū),下午返回碼頭時(shí),停船的泊位是空的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$f(x)=\left\{\begin{array}{l}{{x}^{2},x≥2}\\{x+3,x<2}\end{array}\right.$,若f(a)+f(3)=0,則實(shí)數(shù)a=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知冪函數(shù)y=f(x)滿(mǎn)足f(27)=3,則f(x)=${x^{\frac{1}{3}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案