【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/克

頻數(shù)

(490,495]

6

(495,500]

8

(500,505]

14

(505,510]

8

(510,515]

4

甲流水線樣本頻數(shù)分布表:

甲流水線

乙流水線

總計

合格品

不合格品

總計

1根據(jù)上表數(shù)據(jù)作出甲流水線樣本的頻率分布直方圖

2若以頻率作為概率,試估計從乙流水線任取件產(chǎn)品,該產(chǎn)品恰好是合格品的概率;

3由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān)?

附表:

(參考公式:

【答案】(1)直方圖見解析;(2) ;(3)能.

【解析】試題分析:(1)根據(jù)所給的每一組的頻數(shù)和樣本容量做出每一組的頻率,可在平面直角坐標(biāo)系中做出頻率分步直方圖;(2)根據(jù)直方圖的性質(zhì),可得直方圖中中間三個矩形的面積之和即為產(chǎn)品恰好是合格品的概率;(3)利用公式求得 ,與鄰界值比較,即可得到結(jié)論;

試題解析(1)根據(jù)所給的每一組的頻數(shù)和樣本容量做出每一組的頻率,在平面直角坐標(biāo)系中做出頻率分步直方圖,甲流水線樣本的頻率分布直方圖如下:

2由圖1知,乙樣本中合格品數(shù)為(0.06+0.09+0.03)×5×40=36,故合格品的頻率為36/40=0.9據(jù)此可估計從乙流水線上任取一件產(chǎn)品該產(chǎn)品為合格品的概率P=0.9.

3

甲流水線

乙流水線

總計

合格品

30

36

66

不合格品

10

4

14

總計

40

40

80

,能在犯錯誤的概率不超過0.1的前提下認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.

(Ⅰ)求證:AC⊥平面ABB1A1;

(Ⅱ)求點D到平面ABC1的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點.

(1)求證:PA∥平面EDB;
(2)求銳二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)滿足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)時,f(x)=log2 ,則y=f(x)在(1,2)內(nèi)是(
A.單調(diào)增函數(shù),且f(x)<0
B.單調(diào)減函數(shù),且f(x)<0
C.單調(diào)增函數(shù),且f(x)>0
D.單調(diào)增函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù).

1)求實數(shù)的值;

2)判斷函數(shù)上的單調(diào)性,并給出證明;

3)當(dāng)時,函數(shù)的值域是,求實數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足“對任意的x1x2∈(0,+∞),使得<0”成立的是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分)已知圓有以下性質(zhì):

過圓上一點的圓的切線方程是.

為圓外一點,過作圓的兩條切線,切點分別為則直線的方程為.

若不在坐標(biāo)軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即,且平分線段.

(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點的切線方程(不要求證明);

(2)過橢圓外一點作兩直線,與橢圓相切于兩點,求過兩點的直線方程;

(3)若過橢圓外一點不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點,求證:為定值,且平分線段.

查看答案和解析>>

同步練習(xí)冊答案