14.直線x-y+2=0與圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的位置關(guān)系是(  )
A.相離B.相切
C.直線過(guò)圓心D.相交但直線不過(guò)圓心

分析 把圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))化為普通方程,求出圓心和半徑,再求出圓心到直線x-y+2=0的距離,由此能判斷直線x-y+2=0與圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的位置關(guān)系.

解答 解:圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的普通方程為x2+y2=4,
圓心為(0,0),半徑r=2,
圓心(0,0)到直線x-y+2=0的距離d=$\frac{|0-0+2|}{\sqrt{1+1}}$=$\sqrt{2}$<2,
∴直線x-y+2=0與圓$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù))的位置關(guān)系是相交但不過(guò)圓心.
故選:D.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要注意參數(shù)方程與普通方程的互化,注意點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,則$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.解不等式loga(x2-x-2)<loga(2x2-7x+3)(0<a<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求等腰直角三角形中兩直角邊上的中線所成的鈍角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在f(x)=$\frac{1}{1+{x}^{a-b}+{x}^{a-c}}$+$\frac{1}{1+{x}^{b-c}+{x}^{b-a}}$+$\frac{1}{1+{x}^{c-a}+{x}^{c-b}}$中,取x≠0的一些特殊的值,均有f(x)=1,一般地,x≠0時(shí),是否恒有f(x)=1?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=1+cos2α}\end{array}\right.$(α為參數(shù)),則曲線C的普通方程是y=$\frac{1}{2}{x}^{2}$,x∈[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在極坐標(biāo)系中,已知直線pcosθ+psinθ+a=0與圓p=2cosθ相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=3+tsinα}\end{array}\right.$,t為參數(shù),0≤α<π;射線θ=φ,θ=φ+$\frac{π}{4}$,θ=φ-$\frac{π}{4}$,θ=φ+$\frac{π}{2}$與曲線C1分別交異于極點(diǎn)O的四點(diǎn)A,B,C,D.
(1)若曲線C1關(guān)于曲線C2對(duì)稱(chēng),求α的值,并把曲線C1和C2化成直角坐標(biāo)方程;
(2)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)用秦九韶算法求多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x-6,當(dāng)x=1時(shí)的值;
(2)求三個(gè)數(shù)72,120,168的最大公約數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案