分析 (1)方程即 (x-2)2+(y+m)2=-m2+2m+3,它表示圓時,應(yīng)有-m2+2m+3>0,求得m的范圍.
(2)當(dāng)半徑最大時,應(yīng)有-m2+2m+3最大,利用二次函數(shù)的性質(zhì)求得此時m的值,可得對應(yīng)的圓的方程.
解答 解:(1)方程x2+y2-4x+2my+2m2-2m+1=0 即 (x-2)2+(y+m)2=-m2+2m+3,它表示圓時,
應(yīng)有-m2+2m+3>0,即m2-2m-3<0,解得-1<m<3,
(2)當(dāng)半徑最大時,應(yīng)有-m2+2m+3最大,此時,m=1,圓的方程為 x2+y2-4x+2y+1=0.
點(diǎn)評 本題主要考查圓的標(biāo)準(zhǔn)方程,求二次函數(shù)的最大值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com