5.已知an=log(n+1)(n+2)(n∈N*).我們把使乘積a1•a2•a3•…•an為整數(shù)的數(shù)n叫做“完美數(shù)”,則在區(qū)間(1,2016)內(nèi)的所有完美數(shù)的和為(  )
A.1024B.2003C.2026D.2048

分析 a1a2a3…an=log23×log34×…×log(n+1)(n+2)=log2(n+2),當(dāng)n+2=2m(m∈N+),即n=2m-2,m∈N+時(shí),n稱為完美數(shù),在區(qū)間(1,2016)中找出所有的完美數(shù)之后用數(shù)列的求和公式進(jìn)行計(jì)算.

解答 解:∵a1a2a3…an=log23×log34×…×log(n+1)(n+2)=log2(n+2),
當(dāng)n+2=2m(m∈N+),即n=2m-2,m∈N+時(shí),n稱為完美數(shù),
在區(qū)間(1,2016)內(nèi)的完美數(shù)為22-2,23-2,24-2,…,2n-2,當(dāng)2n-2≤2016時(shí),n≤10.
∴在區(qū)間(1,2016)內(nèi)所有的完美數(shù)的和S=(22-2)+(23-2)+(24-2)+…+(210-2)
=(22+23+24+…210)-18
=$\frac{{2}^{2}×(1-{2}^{9})}{1-2}$-18=2026,
故選:C.

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì),考查了數(shù)列和的求法,把a(bǔ)1•a2…an化簡轉(zhuǎn)化為對數(shù)的運(yùn)算是解答的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化的思想,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}滿足${a_1}=1,\frac{{n{a_n}-2{a_{n+1}}}}{{{a_{n+1}}}}=n,n∈{N^*}$,則數(shù)列{an}的通項(xiàng)公式是an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0時(shí)$\frac{f(m)+f(n)}{m+n}$>0.
(1)用定義證明f(x)在[-1,1]上是增函數(shù);
(2)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線x+y=1與曲線y=$\sqrt{a-{x^2}}$(a>0)恰有一個(gè)公共點(diǎn),則a的取值范圍是(  )
A.$\frac{1}{2}$<a<1B.$\frac{1}{2}$≤a<1C.a>1或$a=\frac{1}{2}$D.$a=\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在銳角三角形ABC中,A=2B,B,C的對邊分別是b、c.則$\frac{a}{b+c}$的取值范圍是($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=f(x+1)定義域是{x|-2≤x≤3},則y=f(2|x|-1)的定義域是$[-\frac{5}{2},\frac{5}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,a2+c2=b2-ac.
(1)求∠B 的大;
(2)求cosA+cosC 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x),對任意實(shí)數(shù)m,n滿足f(m+n)=f(m)f(n),且f(1)=a(a≠0),則f(n)=an(n∈N +).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m211511080135105
銷售價(jià)格y(萬元)24.821.618.429.222
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線.
(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\overline{y}$=$\stackrel{∧}$$\overline{x}$+$\stackrel{∧}{a}$,其中$\sum_{i=1}^{5}{{x}_{i}}^{2}$=60975,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=12952.

查看答案和解析>>

同步練習(xí)冊答案