【題目】已知全集U=R, ,B={x|log3x≤2}. (Ⅰ)求A∩B;
(Ⅱ)求U(A∪B).

【答案】解:(Ⅰ) ={x|﹣1<x<2}, B={x|log3x≤2}={x|0<x≤9,
所以A∩B={x|0<x<2};
(Ⅱ)A∪B={x|﹣1<x≤9},
CU(A∪B)={x|x≤﹣1或x>9
【解析】(1)求解指數(shù)不等式和對數(shù)不等式化簡集合A,B,然后直接利用交集概念求解;(2)直接利用補(bǔ)集運算求解.
【考點精析】掌握交、并、補(bǔ)集的混合運算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需要將函數(shù)y=sin3x的圖象( )m.
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)軸交于兩點,點在拋物線上(點在第一象限),.記,梯形面積為

求面積為自變量的函數(shù)解析式;

其中為常數(shù)且的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等比數(shù)列,an0,a3=12,且a2a4,a2+36成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

(2)設(shè){bn}是等差數(shù)列,且b3=a3,b9=a5,求b3+b5+b7++b2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足:對任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.則下列結(jié)論正確的是(
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32
C.f(log25)<f(0.32)<f(20.3
D.f(0.32)<f(log25)<f(20.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式的解集.

(2) 關(guān)于的不等式的解集是,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且當(dāng)x>0時,f′(x)>0,g′(x)>0,則當(dāng)x<0時有(
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線2x﹣y﹣4=0與直線x﹣2y+1=0交于點p.
(1)求過點p且垂直于直線3x+4y﹣15=0的直線l1的方程;(結(jié)果寫成直線方程的一般式)
(2)求過點P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3+3x2+a(a為常數(shù)),在[﹣3,3]上有最小值3,那么在[﹣3,3]上f(x)的最大值是

查看答案和解析>>

同步練習(xí)冊答案