(本題滿分12分)三棱錐
中,
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
,且異面直線
與
的夾角為
時,求二面角
的余弦值.
(1)通過建立空間直角坐標系來分析,或者利用線面垂直
平面
,進而得到面面垂直。
(2)
試題分析:證明:(Ⅰ)作
平面
于點
,∵
,
∴
,即
為
的外心
又∵
中,
故
為
邊的中點
所以
平面
即證:平面
平面
. 。6分
(Ⅱ)∵
中,
,
,∴
∵
,且異面直線
與
的夾角為
,
∴
,∴
為正三角形,可解得
.
以
為坐標原點,建立如圖所示空間直角坐標系
,則
,
,
,
,∴
. …………………….9分
設平面
的法向量為
,
由
, 取
平面
的法向量為
∴
.
由圖可知,所求二面角
為鈍角,其的余弦值為
. ……….12分
點評:解決該類立體幾何問題,尤其是二面角的求解,通常情況下,都是建立空間直角坐標系,借助于法向量來求解二面角的方法。而對于面面垂直的證明,一般都是利用線面垂直為前提,結(jié)合面面垂直的判定定理得到,屬于中檔題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖在三棱錐S
中
,
,
,
,
.
(1)證明
。
(2)求側(cè)面
與底面
所成二面角的大小。
(3)求異面直線SC與AB所成角的大小
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如果平面的一條斜線和它在這個平面上的射影的方向向量分別是
那么這條斜線與平面所成的角是 ____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四棱錐
的底面
為菱形,
平面
,
, E、F分別為
的中點,
.
(Ⅰ)求證:平面
平面
.
(Ⅱ)求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
表示兩條直線,
表示兩個平面,則下列命題是真命題的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知平行六面體
ABCD-
A1B1C1D1中,∠
A1AD=∠
A1AB=∠
BAD=60°,
AA1=
AB=
AD=1,
E為
A1D1的中點。
給出下列四個命題:①∠
BCC1為異面直線
與
CC1所成的角;②三棱錐
A1-
ABD是正三棱錐;③
CE⊥平面
BB1D1D;④
;⑤|
|=
.其中正確的命題有_____________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,PA垂直于矩形ABCD所在的平面,
,E、F分別是AB、PD的中點.
(Ⅰ)求證:平面PCE
平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
把10個蘋果分成三堆,要求每堆至少有一個,至多5個,不同的分法有 種.
查看答案和解析>>