已知橢圓
x2
49
+
y2
36
=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為6,則P到另一個(gè)焦點(diǎn)的距離為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的定義方程求解
解答: 解:∵橢圓
x2
49
+
y2
36
=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為6,
∴|PF1|+|PF2|=14,
即P到另一個(gè)焦點(diǎn)的距離為14-6=8
故答案為:8
點(diǎn)評(píng):本題考查了橢圓的定義,標(biāo)準(zhǔn)方程,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)上最高點(diǎn)為(2,
2
),該最高點(diǎn)到相鄰的最低點(diǎn)間曲線與x軸交于一點(diǎn)(6,0).求函數(shù)解析式,并求函數(shù)在x∈[-6,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,an+1-an=3×22n-1,數(shù)列{bn}滿足bn=log2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{
1
bnbn+1
}
的前n項(xiàng)和為Tn,若t≥Tn對(duì)任意的n∈N+恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有3只紅球,2只白球,1只黑球.
(1)若從袋中有放回的抽取3次,每次抽取一只,求恰有兩次取到紅球的概率.
(2)若從袋中有放回的抽取3次,每次抽取一只,求抽全三種顏色球的概率.
(3)若從袋中不放回的抽取3次,每次抽取一只.設(shè)取到1只紅球得2分,取到1    只白球得1分,取到1只黑球得0分,試求得分ξ的數(shù)學(xué)期望.
(4)若從袋中不放回的抽取,每次抽取一只.當(dāng)取到紅球時(shí)停止抽取,否則繼續(xù)抽取,求抽取次數(shù)η的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
的模均為2,且<
a
b
>=
3
,若向量
c
滿足|
c
-(
a
+
b
)|=
2
,則|
c
|的取值范圍為(  )
A、[2-
2
,4]
B、[0,2+
2
]
C、[2-
2
,2+
2
]
D、[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,n(an+1-an)=an+n2+n,n∈N*
(1)證明:數(shù)列{
an
n
}
是等差數(shù)列;
(2)設(shè)an=(
bn
3n
)2
,求正項(xiàng)數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)應(yīng)邊分別為a、b、c且
cosC
cosB
=
3a-c
b

(Ⅰ)求sinB
(Ⅱ)若b=4
2
,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有二階導(dǎo)數(shù),且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,證明:在區(qū)間(x1,x2)內(nèi)至少存在ξ一點(diǎn),使得f″(ξ)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=
ex
a
+
a
ex
是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上是增函數(shù);
(3)解方程f(x)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案