如圖所示,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1
分析:(1)利用勾股定理證明AC⊥BC,證明C1C⊥底面ABC,可得AC⊥CC1 ,由線面垂直的判定定理證得AC⊥平面BCC1B1 ,從而證得AC⊥BC1
(2)設(shè)BC1∩B1C=O,由三角形的中位線性質(zhì)可得OD∥AC1,從而利用線面平行的判定定理證明AC1∥平面CDB1
解答:證明:(1)∵AC2+BC2=AB2,∴AC⊥BC.
又∵C1C∥AA1,AA1⊥底面ABC,∴C1C⊥底面ABC,∴AC⊥CC1
又BC∩CC1=C,∴AC⊥平面BCC1B1
而BC1?平面BCC1B1,∴AC⊥BC1
(2)設(shè)BC1∩B1C=O,則O為BC1的中點,連接OD,
∵D為AB的中點,∴OD∥AC1,
又∵OD?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1
點評:本題考查證明線線垂直、線面垂直、線面平行的方法,空間中直線與直線間的位置關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成的角是( 。
A、45°B、60°C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心AA1=2
2
C1H⊥
平面AA1B1B且C1H=
5

(1)求異面直線AC與A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心數(shù)學(xué)公式平面AA1B1B且數(shù)學(xué)公式
(1)求異面直線AC與A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱柱ABC-A′B′C′中,點E、F、H、K分別為AC′、CB′、A′B、B′C′的中點,G為△ABC的重心.從K、H、G、B′中取一點作為P,使得該棱柱恰有2條棱與平面PEF平行,則P為(  ).

(A)K  (B)H  (C)G    (D)B′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7.3 空間點、直線、平面之間的位置關(guān)系(1)(解析版) 題型:選擇題

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成的角是( )

A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

同步練習(xí)冊答案