【題目】已知函數.
(1)證明:函數f(x)在(-1,+∞)上為增函數;
(2)用反證法證明方程f(x)=0沒有負數根.
【答案】
(1)
【解答】
證明:任取x1,x2∈(-1,+∞),不妨設x1<x2,
由于a>1,ax1<ax2,∴ax2-ax1>0.
又∵x1+1>0,x2+1>0,
∴
>0,
于是f(x2)-f(x1)=ax2-ax1+ >0,
即f(x2)>f(x1),
故函數f(x)在(-1,+∞)上為增函數.
(2)
【解答】
證明:假設存在x0<0(x0≠-1)滿足f(x0)=0,
則ax0=- .
∵a>1,
∴0<ax0<1.
∴0<- <1,即 <x0<2,與假設x0<0相矛盾,
故方程f(x)=0沒有負數根.
【解析】本題主要考查了綜合法的思考過程、特點及應用、反證法的應用,解決問題的關鍵是(1)根據所給條件結合所求命題綜合分析計算即可;(2)運用反證法的證明方法進行證明即可.
科目:高中數學 來源: 題型:
【題目】定義在R上的函數 y=f(x) 對任意的x,y∈R,滿足條件:f(x+y)=f(x)+f(y)﹣2,且當x>0時,f(x)>2
(1)求f(0)的值;
(2)證明:函數f(x)是R上的單調增函數;
(3)解不等式f(2t2﹣t﹣3)﹣2<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(﹣x)=0;②對于定義域上的任意x1、x2 , 當x1≠x2時,恒有 <0,則稱函數f(x)為“理想函數”.給出下列三個函數中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被稱為“理想函數”的有(填相應的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當n=1,2,3,4,5,6 時,比較 2n 和 n2 的大小并猜想,則下列猜想中一定正確的是( )
A.時,n2>2n
B. 時, n2>2n
C. 時, 2n>n2
D. 時, 2n>n2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家發(fā)現視覺和空間能力與性別有關,某數學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)
(1)能否據此判斷有97.5%的把握認為視覺和空間能力與性別有關?
(2)經過多次測試后,女生甲每次解答一道幾何題所用的時間在5~7分鐘,女生乙每次解答一道幾何題所用的時間在6~8分鐘,現甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com