精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,設

(1)判斷函數零點的個數,并給出證明;

(2)首項為的數列滿足:①;②.其中.求證:對于任意的,均有

【答案】(1)有且僅有一個零點;(2)見解析

【解析】試題分析:(1)先求得的定義域為再證明上單調遞增,即可得結果;(2)利用導數研究函數的單調性,求出數列的最大項與最小項,即可證得結論.

試題解析:(1)由題意知,

當且僅當時等號成立,因此上單調遞增,又,

故函數上有且僅有一個零點;

(2)由(1)可知上單調遞增,且,

故當時, ,即;

時, ,即

因為當,所以,

,則由,又上單調遞減知

這與矛盾,故,

而當時, 單調遞增,故;

同理可證,

故數列為單調遞增數列且所有項均小于,

因此對于任意的,均有

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(Ⅰ)證明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2bx,g(x)=|x﹣1|,若對任意x1 , x2∈[0,2],當x1<x2時都有f(x1)﹣f(x2)<g(x1)﹣g(x2),則實數b的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數g(x)=log2 (x>0),關于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數解,則實數m的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O點為△ABC所在平面內一點,且滿足 +2 +3 = ,現將一粒質點隨機撒在△ABC內,若質點落在△AOC的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數中,表示同一個函數的是(
A.f(x)=x2和f(x)=(x+1)2
B.f(x)= 和f(x)=
C.f(x)=logax2和f(x)=2logax
D.f(x)=x﹣1和f(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,記f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N* , 那么下列說法正確的是(
A.f(x)的圖象關于點(﹣1,1)對稱,f2016(0)=0
B.f(x)的圖象關于點(﹣1,﹣1)對稱,f2016(0)=0
C.f(x)的圖象關于點(﹣1,1)對稱,f2016(0)=1
D.f(x)的圖象關于點(﹣1,﹣1)對稱,f2016(0)=1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(不等式選講)

已知函數

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案