已知圓O1x2+y2=1與圓O2:(x-3)2+(x+4)2=16,則圓O1與圓O2的位置關(guān)系為( 。
分析:先求出兩個圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.
解答:解:圓O1的圓心為O(0,0),半徑等于1,圓O2的圓心為(3,-4),半徑等于4,
它們的圓心距等于
(0-3)2+(0+4)2
=5,等于半徑之和,
故兩個圓相外切,
故選A.
點評:本題主要考查圓的標準方程,圓和圓的位置關(guān)系的判定方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1:x2+y2=1與圓O2:(x-3)2+(y-4)2=36,則圓O1與圓O2的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1的方程為x2+(y+1)2=6,圓O2的圓心坐標為(2,1).若兩圓相交于A,B兩點,且|AB|=4,求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓O1:x2+y2=1與圓O2:(x-3)2+(y-4)2=36,則圓O1與圓O2的位置關(guān)系是( 。
A.相交B.內(nèi)切C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(y﹣4)2=36,則圓O1與圓O2的位置關(guān)系是( 。

 

A.

相交

B.

內(nèi)切

C.

外切

D.

相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省泰安市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知圓O1:x2+y2=1與圓O2:(x-3)2+(y-4)2=36,則圓O1與圓O2的位置關(guān)系是( )
A.相交
B.內(nèi)切
C.外切
D.相離

查看答案和解析>>

同步練習(xí)冊答案