2.設(shè)命題甲:|x-1|>2,命題乙:x>3,則甲是乙的必要不充分條件條件.

分析 解:甲:|x-1|>2,解得x>3或x<-1.命題乙:x>3,即可判斷出結(jié)論.

解答 解:甲:|x-1|>2,解得x>3或x<-1.
命題乙:x>3,
∴甲⇒乙,反之不成立.
則甲是乙的必要不充分條件條件.
故答案為:必要不充分條件.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線ax+y-3=0與圓x2+(y-1)2=4的位置關(guān)系是( 。
A.相交B.相切或相交C.相離D.相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a,b,c分別是△ABC中角A,B,C的對(duì)邊,G是△ABC的三條邊上中線的交點(diǎn),若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{2}$≥cos2x-msinx(x∈R)恒成立,則實(shí)數(shù)m的取值范圍為[-4-2$\sqrt{2}$,4+2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC中,a、b、c成等差數(shù)列,∠B=30°,S△ABC=$\frac{1}{2}$,那么b=( 。
A.1+$\sqrt{3}$B.$\frac{3+\sqrt{3}}{2}$C.$\frac{2+\sqrt{3}}{3}$D.$\frac{3+\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.我國古代名著《九章算術(shù)》用“更相減損術(shù)”求兩個(gè)正整數(shù)的最大公約數(shù)是一個(gè)偉大的創(chuàng)舉,這個(gè)偉大創(chuàng)舉與古老的算法--“輾轉(zhuǎn)相除法”實(shí)質(zhì)一樣,如圖的程序框圖源于“輾轉(zhuǎn)相除法”.當(dāng)輸入a=6102,b=2016時(shí),輸出的a=( 。
A.6B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1(m>n>0)$與曲線x2+y2=m-n無交點(diǎn),則橢圓的離心率e的取值范圍為$({0,\frac{{\sqrt{2}}}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義域?yàn)锳的函數(shù)f(x),若對(duì)任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數(shù)f(x)為“定義域上的M函數(shù)”,給出以下五個(gè)函數(shù):
(1)f(x)=2x+3,x∈R;(2)$f(x)={x^2},x∈[-\frac{1}{2},\frac{1}{2}]$;(3)$f(x)={x^2}+1,x∈[-\frac{1}{2},\frac{1}{2}]$;(4)$f(x)=sinx,x∈[0,\frac{π}{2}]$;(5)f(x)=log2x,x∈[2,+∞).其中是“定義域上的M函數(shù)”的
有4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知奇函數(shù)f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定義域?yàn)镽的減函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=a(x+1)2-4lnx,a∈R.
(1)若x=1是f(x)的極值點(diǎn),求a的值;
(2)已知點(diǎn)P(0,1)和函數(shù)f(x)圖象上動(dòng)點(diǎn)M(m,f(m)),對(duì)任意m∈[1,e],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案